These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 2338348)

  • 1. Finite element analysis of cardiac defibrillation current distributions.
    Sepulveda NG; Wikswo JP; Echt DS
    IEEE Trans Biomed Eng; 1990 Apr; 37(4):354-65. PubMed ID: 2338348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax.
    Panescu D; Webster JG; Tompkins WJ; Stratbucker RA
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):185-92. PubMed ID: 7868146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional finite element model of human transthoracic defibrillation: paddle placement and size.
    Camacho MA; Lehr JL; Eisenberg SR
    IEEE Trans Biomed Eng; 1995 Jun; 42(6):572-8. PubMed ID: 7790013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical defibrillation optimization: an automated, iterative parallel finite-element approach.
    Hutchinson SA; Ng KT; Shadid JN; Nadeem A
    IEEE Trans Biomed Eng; 1997 Apr; 44(4):278-89. PubMed ID: 9125810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of paddle placement and size on defibrillation current distribution: a three-dimensional finite element model.
    Karlon WJ; Eisenberg SR; Lehr JL
    IEEE Trans Biomed Eng; 1993 Mar; 40(3):246-55. PubMed ID: 8335328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element models of thoracic conductive anatomy: sensitivity to changes in inhomogeneity and anisotropy.
    Karlon WJ; Lehr JL; Eisenberg SR
    IEEE Trans Biomed Eng; 1994 Nov; 41(11):1010-7. PubMed ID: 8001989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulated internal defibrillation in humans using an anatomically realistic three-dimensional finite element model of the thorax.
    Kinst TF; Sweeney MO; Lehr JL; Eisenberg SR
    J Cardiovasc Electrophysiol; 1997 May; 8(5):537-47. PubMed ID: 9160230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential or single pulse defibrillation? Investigations towards energy reduction in experimental animals.
    Hannekum A; Dalichau H; Kochs M; Müller H; Höher M; Hirche H
    Thorac Cardiovasc Surg; 1987 Oct; 35(5):270-6. PubMed ID: 2447668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial clinical experience with endocardial defibrillation using an implantable cardioverter/defibrillator with a triple-electrode system.
    Saksena S; Tullo NG; Krol RB; Mauro AM
    Arch Intern Med; 1989 Oct; 149(10):2333-9. PubMed ID: 2802898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of epicardial electrode size and implant site for reduced sequential pulse defibrillation thresholds.
    Kallok MJ; Bourland JD; Tacker WA; Jones DL; Klein GJ; Wessale JL
    Med Instrum; 1986; 20(1):36-9. PubMed ID: 3959941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling current density distributions during transcutaneous cardiac pacing.
    Panescu D; Webster JG; Stratbucker RA
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):549-55. PubMed ID: 7927374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct comparison of monophasic, biphasic and sequential pulse defibrillation over a single current pathway.
    Thakur R; Souza JJ; Chapman PD; Troup PJ; Wetherbee JN
    Can J Cardiol; 1996 Apr; 12(4):407-11. PubMed ID: 8608460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach to the determination of cardiac potential distributions: application to the analysis of electrode configurations.
    Johnston BM; Johnston PR; Kilpatrick D
    Math Biosci; 2006 Aug; 202(2):288-309. PubMed ID: 16797036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model.
    Huang Q; Eason JC; Claydon FJ
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of biventricular and conventional transvenous defibrillation: a computational study using patient derived models.
    Mocanu D; Kettenbach J; Sweeney MO; Kikinis R; Kenknight BH; Eisenberg SR
    Pacing Clin Electrophysiol; 2004 May; 27(5):586-93. PubMed ID: 15125713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of myocardial infarction on catheter defibrillation threshold.
    Babbs CF; Paris RL; Tacker WA; Bourland JD
    Med Instrum; 1983; 17(1):18-20. PubMed ID: 6843409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential pulse defibrillation for implantable defibrillators.
    Bourland JD; Tacker WA; Wessale JL; Kallok MJ; Graf JE; Geddes LA
    Med Instrum; 1986; 20(3):138-42. PubMed ID: 3724587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational studies of transthoracic and transvenous defibrillation in a detailed 3-D human thorax model.
    Jorgenson DB; Haynor DR; Bardy GH; Kim Y
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):172-84. PubMed ID: 7868145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transthoracic atrial defibrillation energy thresholds are correlated to uniformity of current density distributions.
    Hunt LC; de Jongh Curry AL
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4374-7. PubMed ID: 17946241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Transvenous subcutaneous implantation technique of the cardioverter/defibrillator].
    Block M; Hammel D; Borggrefe M; Scheld HH; Breithardt G
    Herz; 1994 Oct; 19(5):259-77. PubMed ID: 8001899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.