BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23383594)

  • 21. Critical Comparison of Structured Contactors for Adsorption-Based Gas Separations.
    DeWitt SJA; Sinha A; Kalyanaraman J; Zhang F; Realff MJ; Lively RP
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():129-152. PubMed ID: 29579401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular simulations of the adsorption and separation of hydrogen sulfide, carbon dioxide, methane, and nitrogen and their binary mixtures (H
    Amouzad Khalili A; Yeganegi S
    J Mol Model; 2021 Apr; 27(5):133. PubMed ID: 33893884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on selective adsorption of biogas components on pillared clays: approach for biogas improvement.
    Pires J; Saini VK; Pinto ML
    Environ Sci Technol; 2008 Dec; 42(23):8727-32. PubMed ID: 19192789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-pressure low-field 1H NMR relaxometry in nanoporous materials.
    Horch C; Schlayer S; Stallmach F
    J Magn Reson; 2014 Mar; 240():24-33. PubMed ID: 24508760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon dioxide separation with a two-dimensional polymer membrane.
    Schrier J
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3745-52. PubMed ID: 22734516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rigorous prognostication and modeling of gas adsorption on activated carbon and Zeolite-5A.
    Dashti A; Raji M; Azarafza A; Baghban A; Mohammadi AH; Asghari M
    J Environ Manage; 2018 Oct; 224():58-68. PubMed ID: 30031919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorptive separation studies of ethane-methane and methane-nitrogen systems using mesoporous carbon.
    Yuan B; Wu X; Chen Y; Huang J; Luo H; Deng S
    J Colloid Interface Sci; 2013 Mar; 394():445-50. PubMed ID: 23312913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks.
    Martín-Calvo A; García-Pérez E; Manuel Castillo J; Calero S
    Phys Chem Chem Phys; 2008 Dec; 10(47):7085-91. PubMed ID: 19039342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ZK-5: a CO₂-selective zeolite with high working capacity at ambient temperature and pressure.
    Liu Q; Pham T; Porosoff MD; Lobo RF
    ChemSusChem; 2012 Nov; 5(11):2237-42. PubMed ID: 22907818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a metal-organic framework with enhanced back bonding for separation of N₂ and CH₄.
    Lee K; Isley WC; Dzubak AL; Verma P; Stoneburner SJ; Lin LC; Howe JD; Bloch ED; Reed DA; Hudson MR; Brown CM; Long JR; Neaton JB; Smit B; Cramer CJ; Truhlar DG; Gagliardi L
    J Am Chem Soc; 2014 Jan; 136(2):698-704. PubMed ID: 24313689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the Effect of Ligand-Originated MOF Isomerism and Methoxy Group Functionalization on Selective Acetylene/Methane and Carbon Dioxide/Methane Adsorption Properties in Two NbO-Type MOFs.
    Wang Y; He M; Gao X; Li S; Xiong S; Krishna R; He Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20559-20568. PubMed ID: 29856212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective extraction of CO2 from simulated flue gas using polymeric ionic liquid sorbent coatings in solid-phase microextraction gas chromatography.
    Zhao Q; Anderson JL
    J Chromatogr A; 2010 Jul; 1217(27):4517-22. PubMed ID: 20537653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A robust highly interpenetrated metal-organic framework constructed from pentanuclear clusters for selective sorption of gas molecules.
    Zhang Z; Xiang S; Chen YS; Ma S; Lee Y; Phely-Bobin T; Chen B
    Inorg Chem; 2010 Sep; 49(18):8444-8. PubMed ID: 20726576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progress in adsorption-based CO2 capture by metal-organic frameworks.
    Liu J; Thallapally PK; McGrail BP; Brown DR; Liu J
    Chem Soc Rev; 2012 Mar; 41(6):2308-22. PubMed ID: 22143077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks.
    Yang Q; Zhong C
    J Phys Chem B; 2006 Sep; 110(36):17776-83. PubMed ID: 16956262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of gas sorption properties of neutral and anionic metal-organic frameworks prepared from the same building blocks but in different solvent systems.
    Choi MH; Park HJ; Hong DH; Suh MP
    Chemistry; 2013 Dec; 19(51):17432-8. PubMed ID: 24318268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient methods for screening of metal organic framework membranes for gas separations using atomically detailed models.
    Keskin S; Sholl DS
    Langmuir; 2009 Oct; 25(19):11786-95. PubMed ID: 19572515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methane storage in molecular nanostructures.
    Adisa OO; Cox BJ; Hill JM
    Nanoscale; 2012 Jun; 4(11):3295-307. PubMed ID: 22538768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mixed-matrix membranes containing functionalized porous metal-organic polyhedrons for the effective separation of CO2-CH4 mixture.
    Ma J; Ying Y; Yang Q; Ban Y; Huang H; Guo X; Xiao Y; Liu D; Li Y; Yang W; Zhong C
    Chem Commun (Camb); 2015 Mar; 51(20):4249-51. PubMed ID: 25669162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.