BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23383621)

  • 21. In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease.
    Sprenger JU; Perera RK; Steinbrecher JH; Lehnart SE; Maier LS; Hasenfuss G; Nikolaev VO
    Nat Commun; 2015 Apr; 6():6965. PubMed ID: 25917898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cardiac-specific overexpression of farnesyl pyrophosphate synthase induces cardiac hypertrophy and dysfunction in mice.
    Yang J; Mou Y; Wu T; Ye Y; Jiang JC; Zhao CZ; Zhu HH; Du CQ; Zhou L; Hu SJ
    Cardiovasc Res; 2013 Mar; 97(3):490-9. PubMed ID: 23180723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of indapamide on cyclic adenosine 3',5'-monophosphate signal transduction system in isolated adult rat cardiomyocytes from normal myocardium and cardiac hypertrophy.
    Rabkin SW
    J Cardiovasc Pharmacol; 1993; 22 Suppl 6():S35-41. PubMed ID: 7508059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional localization of cAMP signalling in cardiac myocytes.
    Vandecasteele G; Rochais F; Abi-Gerges A; Fischmeister R
    Biochem Soc Trans; 2006 Aug; 34(Pt 4):484-8. PubMed ID: 16856839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new regulation of IL-6 production in adult cardiomyocytes by beta-adrenergic and IL-1 beta receptors and induction of cellular hypertrophy by IL-6 trans-signalling.
    Szabo-Fresnais N; Lefebvre F; Germain A; Fischmeister R; Pomérance M
    Cell Signal; 2010 Jul; 22(7):1143-52. PubMed ID: 20227492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of pro-inflammatory cytokine receptor signalling by cAMP in vascular endothelial cells.
    Sands WA; Palmer TM
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1126-8. PubMed ID: 16246062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. beta(2)-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts.
    Steinberg SF
    J Mol Cell Cardiol; 2004 Aug; 37(2):407-15. PubMed ID: 15276011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclic GMP and cyclic AMP induced changes in control and hypertrophic cardiac myocyte function interact through cyclic GMP affected cyclic-AMP phosphodiesterases.
    Weiss HR; Gong GX; Straznicka M; Yan L; Tse J; Scholz PM
    Can J Physiol Pharmacol; 1999 Jun; 77(6):422-31. PubMed ID: 10537228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Survivin determines cardiac function by controlling total cardiomyocyte number.
    Levkau B; Schäfers M; Wohlschlaeger J; von Wnuck Lipinski K; Keul P; Hermann S; Kawaguchi N; Kirchhof P; Fabritz L; Stypmann J; Stegger L; Flögel U; Schrader J; Fischer JW; Hsieh P; Ou YL; Mehrhof F; Tiemann K; Ghanem A; Matus M; Neumann J; Heusch G; Schmid KW; Conway EM; Baba HA
    Circulation; 2008 Mar; 117(12):1583-93. PubMed ID: 18332262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane-delimited stimulation of heart cell calcium current by beta-adrenergic signal-transducing Gs protein.
    Pelzer S; Shuba YM; Asai T; Codina J; Birnbaumer L; McDonald TF; Pelzer D
    Am J Physiol; 1990 Jul; 259(1 Pt 2):H264-7. PubMed ID: 2165365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases.
    Baillie GS
    FEBS J; 2009 Apr; 276(7):1790-9. PubMed ID: 19243430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-resolution measurements of cyclic adenosine monophosphate signals in 3D microdomains.
    Karpen JW; Rich TC
    Methods Mol Biol; 2005; 307():15-26. PubMed ID: 15988052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overview of PDEs and their regulation.
    Omori K; Kotera J
    Circ Res; 2007 Feb; 100(3):309-27. PubMed ID: 17307970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered heart rate and sinoatrial node function in mice lacking the cAMP regulator phosphoinositide 3-kinase-gamma.
    Rose RA; Kabir MG; Backx PH
    Circ Res; 2007 Dec; 101(12):1274-82. PubMed ID: 17975110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac Hypertrophy Changes Compartmentation of cAMP in Non-Raft Membrane Microdomains.
    Pavlaki N; De Jong KA; Geertz B; Nikolaev VO; Froese A
    Cells; 2021 Mar; 10(3):. PubMed ID: 33802377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes.
    Somekawa S; Fukuhara S; Nakaoka Y; Fujita H; Saito Y; Mochizuki N
    Circ Res; 2005 Sep; 97(7):655-62. PubMed ID: 16123333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging the cAMP-dependent signal transduction pathway.
    Zaccolo M; Cesetti T; Di Benedetto G; Mongillo M; Lissandron V; Terrin A; Zamparo I
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1323-6. PubMed ID: 16246109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Second messenger pas de deux: the coordinated dance between calcium and cAMP.
    Borodinsky LN; Spitzer NC
    Sci STKE; 2006 May; 2006(336):pe22. PubMed ID: 16720840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cardiac sarcoplasmic reticulum calcium release and load are enhanced by subcellular cAMP elevations in PI3Kgamma-deficient mice.
    Kerfant BG; Gidrewicz D; Sun H; Oudit GY; Penninger JM; Backx PH
    Circ Res; 2005 May; 96(10):1079-86. PubMed ID: 15860757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mathematical analysis of second messenger compartmentalization.
    Chen W; Levine H; Rappel WJ
    Phys Biol; 2008 Dec; 5(4):046006. PubMed ID: 19075354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.