These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 23383675)

  • 1. DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer.
    Bashashati A; Haffari G; Ding J; Ha G; Lui K; Rosner J; Huntsman DG; Caldas C; Aparicio SA; Shah SP
    Genome Biol; 2012 Dec; 13(12):R124. PubMed ID: 23383675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers.
    Wang T; Ruan S; Zhao X; Shi X; Teng H; Zhong J; You M; Xia K; Sun Z; Mao F
    Nucleic Acids Res; 2021 Jan; 49(D1):D1289-D1301. PubMed ID: 33179738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis.
    Merid SK; Goranskaya D; Alexeyenko A
    BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous identification of multiple driver pathways in cancer.
    Leiserson MD; Blokh D; Sharan R; Raphael BJ
    PLoS Comput Biol; 2013; 9(5):e1003054. PubMed ID: 23717195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. driveR: a novel method for prioritizing cancer driver genes using somatic genomics data.
    Ülgen E; Sezerman OU
    BMC Bioinformatics; 2021 May; 22(1):263. PubMed ID: 34030627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive patient-level classification and quantification of driver events in TCGA PanCanAtlas cohorts.
    Vyatkin AD; Otnyukov DV; Leonov SV; Belikov AV
    PLoS Genet; 2022 Jan; 18(1):e1009996. PubMed ID: 35030162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating omics data and protein interaction networks to prioritize driver genes in cancer.
    Zhang T; Zhang D
    Oncotarget; 2017 Aug; 8(35):58050-58060. PubMed ID: 28938536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal Meta-Analysis of 1,494 Hepatocellular Carcinoma Samples Reveals Significant Impact of Consensus Driver Genes on Phenotypes.
    Chaudhary K; Poirion OB; Lu L; Huang S; Ching T; Garmire LX
    Clin Cancer Res; 2019 Jan; 25(2):463-472. PubMed ID: 30242023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server.
    Han H; Lehner B; Lee I
    Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaches for the identification of driver mutations in cancer: A tutorial from a computational perspective.
    Cutigi JF; Evangelista AF; Simao A
    J Bioinform Comput Biol; 2020 Jun; 18(3):2050016. PubMed ID: 32698724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
    Wei PJ; Zhang D; Xia J; Zheng CH
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
    Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R
    Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding transcriptional states in cancer.
    Wouters J; Kalender Atak Z; Aerts S
    Curr Opin Genet Dev; 2017 Apr; 43():82-92. PubMed ID: 28129557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MECoRank: cancer driver genes discovery simultaneously evaluating the impact of SNVs and differential expression on transcriptional networks.
    Hui Y; Wei PJ; Xia J; Wang YT; Zheng CH
    BMC Med Genomics; 2019 Dec; 12(Suppl 7):140. PubMed ID: 31888623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms.
    Zhang J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):988-998. PubMed ID: 28113329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.