BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 23383675)

  • 21. WITER: a powerful method for estimation of cancer-driver genes using a weighted iterative regression modelling background mutation counts.
    Jiang L; Zheng J; Kwan JSH; Dai S; Li C; Li MJ; Yu B; To KF; Sham PC; Zhu Y; Li M
    Nucleic Acids Res; 2019 Sep; 47(16):e96. PubMed ID: 31287869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A workflow to study mechanistic indicators for driver gene prediction with Moonlight.
    Nourbakhsh M; Saksager A; Tom N; Chen XS; Colaprico A; Olsen C; Tiberti M; Papaleo E
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37551622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying overlapping mutated driver pathways by constructing gene networks in cancer.
    Wu H; Gao L; Li F; Song F; Yang X; Kasabov N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive evaluation of computational methods for predicting cancer driver genes.
    Shi X; Teng H; Shi L; Bi W; Wei W; Mao F; Sun Z
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of outcome-related driver mutations in cancer using conditional co-occurrence distributions.
    Treviño V; Martínez-Ledesma E; Tamez-Peña J
    Sci Rep; 2017 Feb; 7():43350. PubMed ID: 28240231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of cis-regulatory mutations generating de novo edges in personalized cancer gene regulatory networks.
    Kalender Atak Z; Imrichova H; Svetlichnyy D; Hulselmans G; Christiaens V; Reumers J; Ceulemans H; Aerts S
    Genome Med; 2017 Aug; 9(1):80. PubMed ID: 28854983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IDENTIFY CANCER DRIVER GENES THROUGH SHARED MENDELIAN DISEASE PATHOGENIC VARIANTS AND CANCER SOMATIC MUTATIONS.
    Ma M; Wang C; Glicksberg BS; Schadt EE; Li SD; Chen R
    Pac Symp Biocomput; 2017; 22():473-484. PubMed ID: 27896999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method.
    Amgalan B; Lee H
    Bioinformatics; 2015 Aug; 31(15):2452-60. PubMed ID: 25819079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CBNA: A control theory based method for identifying coding and non-coding cancer drivers.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Long Q; Li J; Le TD
    PLoS Comput Biol; 2019 Dec; 15(12):e1007538. PubMed ID: 31790386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cancer driver gene discovery in transcriptional regulatory networks using influence maximization approach.
    Rahimi M; Teimourpour B; Marashi SA
    Comput Biol Med; 2019 Nov; 114():103362. PubMed ID: 31561101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. KatzDriver: A network based method to cancer causal genes discovery in gene regulatory network.
    Akhavan-Safar M; Teimourpour B
    Biosystems; 2021 Mar; 201():104326. PubMed ID: 33309969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-stage-vote ensemble framework based on integration of mutation data and gene interaction network for uncovering driver genes.
    Kan Y; Jiang L; Guo Y; Tang J; Guo F
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34791034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding oncogenicity of cancer driver genes and mutations in the cancer genomics era.
    Porta-Pardo E; Valencia A; Godzik A
    FEBS Lett; 2020 Dec; 594(24):4233-4246. PubMed ID: 32239503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutational landscape of RNA-binding proteins in human cancers.
    Neelamraju Y; Gonzalez-Perez A; Bhat-Nakshatri P; Nakshatri H; Janga SC
    RNA Biol; 2018 Jan; 15(1):115-129. PubMed ID: 29023197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pervasive conditional selection of driver mutations and modular epistasis networks in cancer.
    Iranzo J; Gruenhagen G; Calle-Espinosa J; Koonin EV
    Cell Rep; 2022 Aug; 40(8):111272. PubMed ID: 36001960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cancer core modules identification through genomic and transcriptomic changes correlation detection at network level.
    Li W; Wang R; Bai L; Yan Z; Sun Z
    BMC Syst Biol; 2012 Jun; 6():64. PubMed ID: 22691569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new machine learning method for cancer mutation analysis.
    Habibi M; Taheri G
    PLoS Comput Biol; 2022 Oct; 18(10):e1010332. PubMed ID: 36251702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.