BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 23383675)

  • 41. Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models.
    Svetlichnyy D; Imrichova H; Fiers M; Kalender Atak Z; Aerts S
    PLoS Comput Biol; 2015 Nov; 11(11):e1004590. PubMed ID: 26562774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.
    Jia P; Zhao Z
    PLoS Comput Biol; 2014 Feb; 10(2):e1003460. PubMed ID: 24516372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering.
    Van den Eynden J; Fierro AC; Verbeke LP; Marchal K
    BMC Bioinformatics; 2015 Apr; 16():125. PubMed ID: 25903787
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Alterations in transcriptional networks in cancer: the role of noncoding somatic driver mutations.
    Doane AS; Elemento O
    Curr Opin Genet Dev; 2022 Aug; 75():101919. PubMed ID: 35609422
    [TBL] [Abstract][Full Text] [Related]  

  • 45. De novo discovery of mutated driver pathways in cancer.
    Vandin F; Upfal E; Raphael BJ
    Genome Res; 2012 Feb; 22(2):375-85. PubMed ID: 21653252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. e-MutPath: computational modeling reveals the functional landscape of genetic mutations rewiring interactome networks.
    Li Y; Burgman B; Khatri IS; Pentaparthi SR; Su Z; McGrail DJ; Li Y; Wu E; Eckhardt SG; Sahni N; Yi SS
    Nucleic Acids Res; 2021 Jan; 49(1):e2. PubMed ID: 33211847
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Individualized discovery of rare cancer drivers in global network context.
    Petrov I; Alexeyenko A
    Elife; 2022 May; 11():. PubMed ID: 35593700
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Candidate Cancer Driver Mutations in Distal Regulatory Elements and Long-Range Chromatin Interaction Networks.
    Zhu H; Uusküla-Reimand L; Isaev K; Wadi L; Alizada A; Shuai S; Huang V; Aduluso-Nwaobasi D; Paczkowska M; Abd-Rabbo D; Ocsenas O; Liang M; Thompson JD; Li Y; Ruan L; Krassowski M; Dzneladze I; Simpson JT; Lupien M; Stein LD; Boutros PC; Wilson MD; Reimand J
    Mol Cell; 2020 Mar; 77(6):1307-1321.e10. PubMed ID: 31954095
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.
    Cava C; Bertoli G; Colaprico A; Olsen C; Bontempi G; Castiglioni I
    BMC Genomics; 2018 Jan; 19(1):25. PubMed ID: 29304754
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting the functional consequences of cancer-associated amino acid substitutions.
    Shihab HA; Gough J; Cooper DN; Day IN; Gaunt TR
    Bioinformatics; 2013 Jun; 29(12):1504-10. PubMed ID: 23620363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of gene communities in multi-networks reveals cancer drivers.
    Cantini L; Medico E; Fortunato S; Caselle M
    Sci Rep; 2015 Dec; 5():17386. PubMed ID: 26639632
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving existing analysis pipeline to identify and analyze cancer driver genes using multi-omics data.
    Nguyen QH; Le DH
    Sci Rep; 2020 Nov; 10(1):20521. PubMed ID: 33239644
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Snowball: resampling combined with distance-based regression to discover transcriptional consequences of a driver mutation.
    Xu Y; Guo X; Sun J; Zhao Z
    Bioinformatics; 2015 Jan; 31(1):84-93. PubMed ID: 25192743
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptation of a mutual exclusivity framework to identify driver mutations within oncogenic pathways.
    Wang X; Kostrzewa C; Reiner A; Shen R; Begg C
    Am J Hum Genet; 2024 Feb; 111(2):227-241. PubMed ID: 38232729
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Altered oncomodules underlie chromatin regulatory factors driver mutations.
    Frigola J; Iturbide A; Lopez-Bigas N; Peiro S; Gonzalez-Perez A
    Oncotarget; 2016 May; 7(21):30748-59. PubMed ID: 27095575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cancer-mutation network and the number and specificity of driver mutations.
    Iranzo J; Martincorena I; Koonin EV
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E6010-E6019. PubMed ID: 29895694
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Uncovering driver genes in breast cancer through an innovative machine learning mutational analysis method.
    Taheri G; Habibi M
    Comput Biol Med; 2024 Mar; 171():108234. PubMed ID: 38430742
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluating the evaluation of cancer driver genes.
    Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.