BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 23383678)

  • 21. Cellulose hydrolysis ability of a Clostridium thermocellum cellulosome containing small-size scaffolding protein CipA.
    Deng L; Mori Y; Sermsathanaswadi J; Apiwatanapiwat W; Kosugi A
    J Biotechnol; 2015 Oct; 212():144-52. PubMed ID: 26302838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency.
    Setter-Lamed E; Moraïs S; Stern J; Lamed R; Bayer EA
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28901714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum.
    Pinheiro BA; Gilbert HJ; Sakka K; Sakka K; Fernandes VO; Prates JA; Alves VD; Bolam DN; Ferreira LM; Fontes CM
    Biochem J; 2009 Dec; 424(3):375-84. PubMed ID: 19758121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and crystallization of a multimodular heterotrimeric complex containing both type I and type II cohesin-dockerin interactions from the cellulosome of Clostridium thermocellum.
    Currie MA; Adams JJ; Ali S; Smith SP; Jia Z
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Mar; 66(Pt 3):327-9. PubMed ID: 20208173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii β-glucosidase.
    Waeonukul R; Kosugi A; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Prawitwong P; Deng L; Saito M; Mori Y
    Bioresour Technol; 2012 Mar; 107():352-7. PubMed ID: 22257861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol.
    Wen F; Sun J; Zhao H
    Appl Environ Microbiol; 2010 Feb; 76(4):1251-60. PubMed ID: 20023102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying Synergy, Thermostability, and Targeting of Cellulolytic Enzymes and Cellulosomes with Polymerization-Based Amplification.
    Malinowska KH; Rind T; Verdorfer T; Gaub HE; Nash MA
    Anal Chem; 2015 Jul; 87(14):7133-40. PubMed ID: 26114625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added.
    Feng C; Zou S; Liu C; Yang H; Zhang K; Ma Y; Hong J; Zhang M
    World J Microbiol Biotechnol; 2016 May; 32(5):86. PubMed ID: 27038956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
    Raman B; Pan C; Hurst GB; Rodriguez M; McKeown CK; Lankford PK; Samatova NF; Mielenz JR
    PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases.
    Treebupachatsakul T; Nakazawa H; Shinbo H; Fujikawa H; Nagaiwa A; Ochiai N; Kawaguchi T; Nikaido M; Totani K; Shioya K; Shida Y; Morikawa Y; Ogasawara W; Okada H
    J Biosci Bioeng; 2016 Jan; 121(1):27-35. PubMed ID: 26073313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of a family 3a carbohydrate-binding module from the cellulosomal scaffoldin CipA of Clostridium thermocellum with flanking linkers: implications for cellulosome structure.
    Yaniv O; Morag E; Borovok I; Bayer EA; Lamed R; Frolow F; Shimon LJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jul; 69(Pt 7):733-7. PubMed ID: 23832198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis.
    Gold ND; Martin VJ
    J Bacteriol; 2007 Oct; 189(19):6787-95. PubMed ID: 17644599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intein-mediated assembly of tunable scaffoldins for facile synthesis of designer cellulosomes.
    Han Z; Su WW
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1331-1342. PubMed ID: 29275429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide analysis of acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system.
    Dassa B; Borovok I; Lamed R; Henrissat B; Coutinho P; Hemme CL; Huang Y; Zhou J; Bayer EA
    BMC Genomics; 2012 May; 13():210. PubMed ID: 22646801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ethanol production from cellulosic materials using cellulase-expressing yeast.
    Yanase S; Yamada R; Kaneko S; Noda H; Hasunuma T; Tanaka T; Ogino C; Fukuda H; Kondo A
    Biotechnol J; 2010 May; 5(5):449-55. PubMed ID: 20349451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes.
    Fujita Y; Takahashi S; Ueda M; Tanaka A; Okada H; Morikawa Y; Kawaguchi T; Arai M; Fukuda H; Kondo A
    Appl Environ Microbiol; 2002 Oct; 68(10):5136-41. PubMed ID: 12324364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars.
    Fan LH; Zhang ZJ; Mei S; Lu YY; Li M; Wang ZY; Yang JG; Yang ST; Tan TW
    Biotechnol Biofuels; 2016; 9():137. PubMed ID: 27382414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes.
    Yanase S; Hasunuma T; Yamada R; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):381-8. PubMed ID: 20676628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Building a foundation for structure-based cellulosome design for cellulosic ethanol: Insight into cohesin-dockerin complexation from computer simulation.
    Xu J; Crowley MF; Smith JC
    Protein Sci; 2009 May; 18(5):949-59. PubMed ID: 19384997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum.
    Levi Hevroni B; Moraïs S; Ben-David Y; Morag E; Bayer EA
    mBio; 2020 Mar; 11(2):. PubMed ID: 32234813
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.