These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 23383788)

  • 1. Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics.
    Carmele A; Kabuss J; Schulze F; Reitzenstein S; Knorr A
    Phys Rev Lett; 2013 Jan; 110(1):013601. PubMed ID: 23383788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum-to-classical transition in cavity quantum electrodynamics.
    Fink JM; Steffen L; Studer P; Bishop LS; Baur M; Bianchetti R; Bozyigit D; Lang C; Filipp S; Leek PJ; Wallraff A
    Phys Rev Lett; 2010 Oct; 105(16):163601. PubMed ID: 21230970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamically controlling the emission of single excitons in photonic crystal cavities.
    Pagliano F; Cho Y; Xia T; van Otten F; Johne R; Fiore A
    Nat Commun; 2014 Dec; 5():5786. PubMed ID: 25503405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system.
    Tang J; Geng W; Xu X
    Sci Rep; 2015 Mar; 5():9252. PubMed ID: 25783560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle.
    He Y; Jiang C; Chen B; Li JJ; Zhu KD
    Opt Lett; 2012 Jul; 37(14):2943-5. PubMed ID: 22825186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical theory of a quantum emitter strongly coupled to Anderson-localized modes.
    Thyrrestrup H; Smolka S; Sapienza L; Lodahl P
    Phys Rev Lett; 2012 Mar; 108(11):113901. PubMed ID: 22540472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Third emission mechanism in solid-state nanocavity quantum electrodynamics.
    Yamaguchi M; Asano T; Noda S
    Rep Prog Phys; 2012 Sep; 75(9):096401. PubMed ID: 22885777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics.
    Yamaguchi M; Asano T; Noda S
    Opt Express; 2008 Oct; 16(22):18067-81. PubMed ID: 18958086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vacuum Rabi spectra of a single quantum emitter.
    Ota Y; Ohta R; Kumagai N; Iwamoto S; Arakawa Y
    Phys Rev Lett; 2015 Apr; 114(14):143603. PubMed ID: 25910123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavity quantum electrodynamics with separate photon storage and qubit readout modes.
    Leek PJ; Baur M; Fink JM; Bianchetti R; Steffen L; Filipp S; Wallraff A
    Phys Rev Lett; 2010 Mar; 104(10):100504. PubMed ID: 20366408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All optical switch of vacuum Rabi oscillations: the ultrafast quantum eraser.
    Ridolfo A; Vilardi R; Di Stefano O; Portolan S; Savasta S
    Phys Rev Lett; 2011 Jan; 106(1):013601. PubMed ID: 21231737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manifestation of the Purcell Effect in Current Transport through a Dot-Cavity-QED System.
    Abdullah NR; Tang CS; Manolescu A; Gudmundsson V
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31319544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory.
    Vu N; Mejia-Rodriguez D; Bauman NP; Panyala A; Mutlu E; Govind N; Foley JJ
    J Chem Theory Comput; 2024 Feb; 20(3):1214-1227. PubMed ID: 38291561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Photon-Resolved Cross-Kerr Interaction for Autonomous Stabilization of Photon-Number States.
    Holland ET; Vlastakis B; Heeres RW; Reagor MJ; Vool U; Leghtas Z; Frunzio L; Kirchmair G; Devoret MH; Mirrahimi M; Schoelkopf RJ
    Phys Rev Lett; 2015 Oct; 115(18):180501. PubMed ID: 26565448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photon Blockade in Weakly Driven Cavity Quantum Electrodynamics Systems with Many Emitters.
    Trivedi R; Radulaski M; Fischer KA; Fan S; Vučković J
    Phys Rev Lett; 2019 Jun; 122(24):243602. PubMed ID: 31322381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High fidelity heralded single-photon source using cavity quantum electrodynamics.
    Zhang X; Xu C; Ren Z
    Sci Rep; 2018 Feb; 8(1):3140. PubMed ID: 29453365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.