These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 23383831)

  • 1. Interband quasiparticle scattering in superconducting LiFeAs reconciles photoemission and tunneling measurements.
    Hess C; Sykora S; Hänke T; Schlegel R; Baumann D; Zabolotnyy VB; Harnagea L; Wurmehl S; van den Brink J; Büchner B
    Phys Rev Lett; 2013 Jan; 110(1):017006. PubMed ID: 23383831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the unconventional superconducting state of LiFeAs by quasiparticle interference.
    Hänke T; Sykora S; Schlegel R; Baumann D; Harnagea L; Wurmehl S; Daghofer M; Büchner B; van den Brink J; Hess C
    Phys Rev Lett; 2012 Mar; 108(12):127001. PubMed ID: 22540616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic energy gaps of iron-based superconductivity from intraband quasiparticle interference in LiFeAs.
    Allan MP; Rost AW; Mackenzie AP; Xie Y; Davis JC; Kihou K; Lee CH; Iyo A; Eisaki H; Chuang TM
    Science; 2012 May; 336(6081):563-7. PubMed ID: 22556247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angle-resolved photoemission spectroscopy of the iron-chalcogenide superconductor Fe1.03Te0.7Se0.3: strong coupling behavior and the universality of interband scattering.
    Nakayama K; Sato T; Richard P; Kawahara T; Sekiba Y; Qian T; Chen GF; Luo JL; Wang NL; Ding H; Takahashi T
    Phys Rev Lett; 2010 Nov; 105(19):197001. PubMed ID: 21231191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H-NbSe2.
    Arguello CJ; Rosenthal EP; Andrade EF; Jin W; Yeh PC; Zaki N; Jia S; Cava RJ; Fernandes RM; Millis AJ; Valla T; Osgood RM; Pasupathy AN
    Phys Rev Lett; 2015 Jan; 114(3):037001. PubMed ID: 25659014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical approach to resonant inelastic x-ray scattering in iron-based superconductors at the energy scale of the superconducting gap.
    Marra P; van den Brink J; Sykora S
    Sci Rep; 2016 May; 6():25386. PubMed ID: 27151253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of a holelike fermi surface for the iron-based K0.8F1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy.
    Qian T; Wang XP; Jin WC; Zhang P; Richard P; Xu G; Dai X; Fang Z; Guo JG; Chen XL; Ding H
    Phys Rev Lett; 2011 May; 106(18):187001. PubMed ID: 21635119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaffirming the d(x2-y2) superconducting gap using the autocorrelation angle-resolved photoemission spectroscopy of Bi1.5Pb0.55Sr1.6La0.4CuO(6+δ).
    Hashimoto M; He RH; Testaud JP; Meevasana W; Moore RG; Lu DH; Yoshida Y; Eisaki H; Devereaux TP; Hussain Z; Shen ZX
    Phys Rev Lett; 2011 Apr; 106(16):167003. PubMed ID: 21599403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. de Haas-van Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs.
    Putzke C; Coldea AI; Guillamón I; Vignolles D; McCollam A; Leboeuf D; Watson MD; Mazin II; Kasahara S; Terashima T; Shibauchi T; Matsuda Y; Carrington A
    Phys Rev Lett; 2012 Jan; 108(4):047002. PubMed ID: 22400881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak superconducting pairing and a single isotropic energy gap in stoichiometric LiFeAs.
    Inosov DS; White JS; Evtushinsky DV; Morozov IV; Cameron A; Stockert U; Zabolotnyy VB; Kim TK; Kordyuk AA; Borisenko SV; Forgan EM; Klingeler R; Park JT; Wurmehl S; Vasiliev AN; Behr G; Dewhurst CD; Hinkov V
    Phys Rev Lett; 2010 May; 104(18):187001. PubMed ID: 20482200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Out-of-plane momentum and symmetry-dependent energy gap of the pnictide Ba0.6K0.4Fe2As2 superconductor revealed by angle-resolved photoemission spectroscopy.
    Zhang Y; Yang LX; Chen F; Zhou B; Wang XF; Chen XH; Arita M; Shimada K; Namatame H; Taniguchi M; Hu JP; Xie BP; Feng DL
    Phys Rev Lett; 2010 Sep; 105(11):117003. PubMed ID: 20867600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-boson spectral density of LiFeAs obtained from optical data.
    Hwang J; Carbotte JP; Min BH; Kwon YS; Timusk T
    J Phys Condens Matter; 2015 Feb; 27(5):055701. PubMed ID: 25612554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isostructural Spin-Density-Wave and Superconducting Gap Anisotropies in Iron-Arsenide Superconductors.
    Han TT; Chen L; Cai C; Wang YD; Wang ZG; Xin ZM; Zhang Y
    Phys Rev Lett; 2020 Jun; 124(24):247002. PubMed ID: 32639832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic band structure and Fermi surface of CaB6 studied by angle-resolved photoemission spectroscopy.
    Souma S; Komatsu H; Takahashi T; Kaji R; Sasaki T; Yokoo Y; Akimitsu J
    Phys Rev Lett; 2003 Jan; 90(2):027202. PubMed ID: 12570575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unconventional anisotropic s-wave superconducting gaps of the LiFeAs iron-pnictide superconductor.
    Umezawa K; Li Y; Miao H; Nakayama K; Liu ZH; Richard P; Sato T; He JB; Wang DM; Chen GF; Ding H; Takahashi T; Wang SC
    Phys Rev Lett; 2012 Jan; 108(3):037002. PubMed ID: 22400776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the sign-changing superconducting gap in iron-based superconductors with quasiparticle interference and neutron scattering.
    Das T; Balatsky AV
    J Phys Condens Matter; 2012 May; 24(18):182201. PubMed ID: 22498771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermi surface and quasiparticle excitations of Sr2RhO4.
    Baumberger F; Ingle NJ; Meevasana W; Shen KM; Lu DH; Perry RS; Mackenzie AP; Hussain Z; Singh DJ; Shen ZX
    Phys Rev Lett; 2006 Jun; 96(24):246402. PubMed ID: 16907260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasiparticle interference in the spin-density wave phase of iron-based superconductors.
    Knolle J; Eremin I; Akbari A; Moessner R
    Phys Rev Lett; 2010 Jun; 104(25):257001. PubMed ID: 20867410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disorder effects in pnictides: a tunneling spectroscopy study.
    Noat Y; Cren T; Dubost V; Lange S; Debontridder F; Toulemonde P; Marcus J; Sulpice A; Sacks W; Roditchev D
    J Phys Condens Matter; 2010 Nov; 22(46):465701. PubMed ID: 21403373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directly visualizing the sign change of d-wave superconducting gap in Bi
    Gu Q; Wan S; Tang Q; Du Z; Yang H; Wang QH; Zhong R; Wen J; Gu GD; Wen HH
    Nat Commun; 2019 Apr; 10(1):1603. PubMed ID: 30962440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.