These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23383850)

  • 1. Demonstration of secondary currents in the pressure-driven flow of a concentrated suspension through a square conduit.
    Zrehen A; Ramachandran A
    Phys Rev Lett; 2013 Jan; 110(1):018306. PubMed ID: 23383850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-to-solid transition of concentrated suspensions under complex transient shear histories.
    Guo Y; Yu W; Xu Y; Zhou C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061404. PubMed ID: 20365172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of the solid and liquid phases in dilute sheared Brownian suspensions: irreversibility and particle migration.
    Brown JR; Seymour JD; Codd SL; Fridjonsson EO; Cokelet GR; Nydén M
    Phys Rev Lett; 2007 Dec; 99(24):240602. PubMed ID: 18233432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of concentrated fluid-particle suspension flows in axisymmetric geometries.
    Hofer M; Perktold K
    Biorheology; 1997; 34(4-5):261-79. PubMed ID: 9578803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions.
    Romeo G; D'Avino G; Greco F; Netti PA; Maffettone PL
    Lab Chip; 2013 Jul; 13(14):2802-7. PubMed ID: 23670133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dilatant flow of concentrated suspensions of rough particles.
    Lootens D; van Damme H; Hémar Y; Hébraud P
    Phys Rev Lett; 2005 Dec; 95(26):268302. PubMed ID: 16486413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid.
    Yuan D; Zhang J; Yan S; Peng G; Zhao Q; Alici G; Du H; Li W
    Electrophoresis; 2016 Aug; 37(15-16):2147-55. PubMed ID: 27140330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscosity calculation of a nanoparticle suspension confined in nanochannels.
    Wang Y; Keblinski P; Chen Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036313. PubMed ID: 23031019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective confinement as origin of the equivalence of kinetic temperature and fluctuation-dissipation ratio in a dense shear-driven suspension.
    Lander B; Seifert U; Speck T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021103. PubMed ID: 22463149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layering instability in a confined suspension flow.
    Zurita-Gotor M; Bławzdziewicz J; Wajnryb E
    Phys Rev Lett; 2012 Feb; 108(6):068301. PubMed ID: 22401126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiparticle collision dynamics simulations of viscoelastic fluids: shear-thinning Gaussian dumbbells.
    Kowalik B; Winkler RG
    J Chem Phys; 2013 Mar; 138(10):104903. PubMed ID: 23514515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model for particle migration in bidisperse suspensions by use of effective temperature.
    Vollebregt HM; van der Sman RG; Boom RM
    Faraday Discuss; 2012; 158():89-103; discussion 105-24. PubMed ID: 23234163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the structural features of fiber suspensions in converging channel flow.
    Lin JZ; Zhang LX
    J Zhejiang Univ Sci; 2003; 4(4):400-6. PubMed ID: 12861614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology of non-Brownian suspensions.
    Denn MM; Morris JF
    Annu Rev Chem Biomol Eng; 2014; 5():203-28. PubMed ID: 24655134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle-pressure-induced self-filtration in concentrated suspensions.
    Kulkarni SD; Metzger B; Morris JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):010402. PubMed ID: 20866556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase segregation through transient network formation in a binary particle suspension in simple shear: application to dough.
    van Opheusden JH; Molenaar J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042305. PubMed ID: 24827249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Film depth and concentration banding in free-surface Couette flow of a suspension.
    Timberlake BD; Morris JF
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):895-910. PubMed ID: 12804220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear microrheology reveals entanglement-driven molecular-level viscoelasticity of concentrated DNA.
    Chapman CD; Robertson-Anderson RM
    Phys Rev Lett; 2014 Aug; 113(9):098303. PubMed ID: 25216012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Solid-like State for Liquid/Liquid/Particle Mixtures with Bicontinuous Morphology of Concentrated Emulsion and Concentrated Suspension.
    Hao B; Yu W
    Langmuir; 2019 Jul; 35(29):9529-9537. PubMed ID: 31251879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.