These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23383850)

  • 21. Structure and rheology of SiO2 nanoparticle suspensions under very high shear rates.
    Chevalier J; Tillement O; Ayela F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051403. PubMed ID: 20364981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrodynamic segregation in a bidisperse colloidal suspension in microchannel flow: A theoretical study.
    Kanehl P; Stark H
    J Chem Phys; 2015 Jun; 142(21):214901. PubMed ID: 26049518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions.
    Blanc F; Peters F; Lemaire E
    Phys Rev Lett; 2011 Nov; 107(20):208302. PubMed ID: 22181780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscoelastic control of spatiotemporal order in bacterial active matter.
    Liu S; Shankar S; Marchetti MC; Wu Y
    Nature; 2021 Feb; 590(7844):80-84. PubMed ID: 33536650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrodynamic interactions between two equally sized spheres in viscoelastic fluids in shear flow.
    Snijkers F; Pasquino R; Vermant J
    Langmuir; 2013 May; 29(19):5701-13. PubMed ID: 23600865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rotational behaviour of red blood cells in suspension: a mesoscale simulation study.
    Janoschek F; Mancini F; Harting J; Toschi F
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2337-44. PubMed ID: 21536581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient lattice Boltzmann algorithm for Brownian suspensions.
    Mynam M; Sunthar P; Ansumali S
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2237-45. PubMed ID: 21536570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mixing and segregation of microspheres in microchannel flows of mono- and bidispersed suspensions.
    Gao C; Xu B; Gilchrist JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036311. PubMed ID: 19392053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-inspired particle separator design based on the food retention mechanism by suspension-feeding fish.
    Hung TC; Piedrahita RH; Cheer A
    Bioinspir Biomim; 2012 Dec; 7(4):046003. PubMed ID: 22820145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short-time self-diffusion coefficient of a particle in a colloidal suspension bounded by a microchannel: virial expansions and simulation.
    Kędzierski M; Wajnryb E
    J Chem Phys; 2011 Oct; 135(16):164104. PubMed ID: 22047225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Porous agglomerates in the general linear flow field.
    Vainshtein P; Shapiro M
    J Colloid Interface Sci; 2006 Jun; 298(1):183-91. PubMed ID: 16386267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active viscoelastic matter: from bacterial drag reduction to turbulent solids.
    Hemingway EJ; Maitra A; Banerjee S; Marchetti MC; Ramaswamy S; Fielding SM; Cates ME
    Phys Rev Lett; 2015 Mar; 114(9):098302. PubMed ID: 25793858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A predictive aggregate transport model for microfiltration of combined macromolecular solutions and poly-disperse suspensions: model development.
    Baruah GL; Belfort G
    Biotechnol Prog; 2003; 19(5):1524-32. PubMed ID: 14524715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nondestructive rheological measurement of aqueous dispersions of solid lipid nanoparticles: effects of lipid types and concentrations on dispersion consistency.
    Seetapan N; Bejrapha P; Srinuanchai W; Puttipipatkhachorn S; Ruktanonchai U
    Drug Dev Ind Pharm; 2010 Sep; 36(9):1005-15. PubMed ID: 20184417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alignment of particles in sheared viscoelastic fluids.
    Santos de Oliveira IS; van den Noort A; Padding JT; den Otter WK; Briels WJ
    J Chem Phys; 2011 Sep; 135(10):104902. PubMed ID: 21932919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cage effect for the velocity correlation functions of a Brownian particle in viscoelastic shear flows.
    Mankin R; Laas K; Lumi N; Rekker A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042127. PubMed ID: 25375458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of a disordered solid via a shock-induced transition in a dense particle suspension.
    Petel OE; Frost DL; Higgins AJ; Ouellet S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021401. PubMed ID: 22463206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct investigation of anisotropic suspension structure in pressure-driven flow.
    Gao C; Kulkarni SD; Morris JF; Gilchrist JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041403. PubMed ID: 20481723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Migration and alignment of spherical particles in sheared viscoelastic suspensions. A quantitative determination of the flow-induced self-assembly kinetics.
    Pasquino R; Panariello D; Grizzuti N
    J Colloid Interface Sci; 2013 Mar; 394():49-54. PubMed ID: 23266026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brownian dynamics simulation of orientational behavior, flow-induced structure, and rheological properties of a suspension of oblate spheroid particles under simple shear.
    Yamamoto T; Suga T; Mori N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021509. PubMed ID: 16196575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.