BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23384318)

  • 21. A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain.
    Frindel C; Robini MC; Rousseau D
    Med Image Anal; 2014 Jan; 18(1):144-60. PubMed ID: 24184525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatially adaptive mixture modeling for analysis of FMRI time series.
    Vincent T; Risser L; Ciuciu P
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1059-74. PubMed ID: 20350840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hidden Markov multiple event sequence models: A paradigm for the spatio-temporal analysis of fMRI data.
    Faisan S; Thoraval L; Armspach JP; Heitz F
    Med Image Anal; 2007 Feb; 11(1):1-20. PubMed ID: 17097334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A toolbox for multiple sclerosis lesion segmentation.
    Roura E; Oliver A; Cabezas M; Valverde S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Lladó X
    Neuroradiology; 2015 Oct; 57(10):1031-43. PubMed ID: 26227167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MRI texture analysis in multiple sclerosis: toward a clinical analysis protocol.
    Harrison LC; Raunio M; Holli KK; Luukkaala T; Savio S; Elovaara I; Soimakallio S; Eskola HJ; Dastidar P
    Acad Radiol; 2010 Jun; 17(6):696-707. PubMed ID: 20457414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Data-driven brain MRI segmentation supported on edge confidence and a priori tissue information.
    Jiménez-Alaniz JR; Medina-Bañuelos V; Yáñez-Suárez O
    IEEE Trans Med Imaging; 2006 Jan; 25(1):74-83. PubMed ID: 16398416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain lesion detection in MRI with fuzzy and geostatistical models.
    Pham TD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3150-3. PubMed ID: 21096593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial normalization of multiple sclerosis brain MRI data depends on analysis method and software package.
    Pirzada S; Uddin MN; Figley TD; Kornelsen J; Puig J; Marrie RA; Mazerolle EL; Fisk JD; Helmick CA; O'Grady CB; Patel R; Figley CR;
    Magn Reson Imaging; 2020 May; 68():83-94. PubMed ID: 32007558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of 3D cube FLAIR with 2D FLAIR for multiple sclerosis imaging at 3 Tesla.
    Patzig M; Burke M; Brückmann H; Fesl G
    Rofo; 2014 May; 186(5):484-8. PubMed ID: 24347360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generalized likelihood ratio tests for change detection in diffusion tensor images: application to multiple sclerosis.
    Boisgontier H; Noblet V; Heitz F; Rumbach L; Armspach JP
    Med Image Anal; 2012 Jan; 16(1):325-38. PubMed ID: 21963295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bayesian classification of multiple sclerosis lesions in longitudinal MRI using subtraction images.
    Elliott C; Francis SJ; Arnold DL; Collins DL; Arbel T
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):290-7. PubMed ID: 20879327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of brain atrophy estimation algorithms using simulated ground-truth data.
    Sharma S; Noblet V; Rousseau F; Heitz F; Rumbach L; Armspach JP
    Med Image Anal; 2010 Jun; 14(3):373-89. PubMed ID: 20219411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incorporating domain knowledge into the fuzzy connectedness framework: application to brain lesion volume estimation in multiple sclerosis.
    Horsfield MA; Bakshi R; Rovaris M; Rocca MA; Dandamudi VS; Valsasina P; Judica E; Lucchini F; Guttmann CR; Sormani MP; Filippi M
    IEEE Trans Med Imaging; 2007 Dec; 26(12):1670-80. PubMed ID: 18092737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voxel-based iterative sensitivity (VBIS) analysis: methods and a validation of intensity scaling for T2-weighted imaging of hippocampal sclerosis.
    Abbott DF; Pell GS; Pardoe H; Jackson GD
    Neuroimage; 2009 Feb; 44(3):812-9. PubMed ID: 18996207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hierarchical conditional random fields for detection of gad-enhancing lesions in multiple sclerosis.
    Karimaghaloo Z; Arnold DL; Collins DL; Arbel T
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):379-86. PubMed ID: 23286071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-dimensional spatial normalization of diffusion tensor images improves the detection of white matter differences: an example study using amyotrophic lateral sclerosis.
    Zhang H; Avants BB; Yushkevich PA; Woo JH; Wang S; McCluskey LF; Elman LB; Melhem ER; Gee JC
    IEEE Trans Med Imaging; 2007 Nov; 26(11):1585-97. PubMed ID: 18041273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo quantitative evaluation of brain tissue damage in multiple sclerosis using gradient echo plural contrast imaging technique.
    Sati P; Cross AH; Luo J; Hildebolt CF; Yablonskiy DA
    Neuroimage; 2010 Jul; 51(3):1089-97. PubMed ID: 20338247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis.
    Derakhshan M; Caramanos Z; Giacomini PS; Narayanan S; Maranzano J; Francis SJ; Arnold DL; Collins DL
    Neuroimage; 2010 Oct; 52(4):1261-7. PubMed ID: 20483380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A statistical parts-based model of anatomical variability.
    Toews M; Arbel T
    IEEE Trans Med Imaging; 2007 Apr; 26(4):497-508. PubMed ID: 17427737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.