BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23384403)

  • 1. Synthesis of cyclic pyranopterin monophosphate, a biosynthetic intermediate in the molybdenum cofactor pathway.
    Clinch K; Watt DK; Dixon RA; Baars SM; Gainsford GJ; Tiwari A; Schwarz G; Saotome Y; Storek M; Belaidi AA; Santamaria-Araujo JA
    J Med Chem; 2013 Feb; 56(4):1730-8. PubMed ID: 23384403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and stability of the molybdenum cofactor intermediate cyclic pyranopterin monophosphate.
    Santamaria-Araujo JA; Wray V; Schwarz G
    J Biol Inorg Chem; 2012 Jan; 17(1):113-22. PubMed ID: 21877100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biosynthesis of the molybdenum cofactors in Escherichia coli.
    Leimkühler S
    Environ Microbiol; 2020 Jun; 22(6):2007-2026. PubMed ID: 32239579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biosynthesis of the molybdenum cofactors.
    Mendel RR; Leimkühler S
    J Biol Inorg Chem; 2015 Mar; 20(2):337-47. PubMed ID: 24980677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic Investigation of cPMP Synthase in Molybdenum Cofactor Biosynthesis Using an Uncleavable Substrate Analogue.
    Hover BM; Lilla EA; Yokoyama K
    Biochemistry; 2015 Dec; 54(49):7229-36. PubMed ID: 26575208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functional principle of eukaryotic molybdenum insertases.
    Krausze J; Hercher TW; Zwerschke D; Kirk ML; Blankenfeldt W; Mendel RR; Kruse T
    Biochem J; 2018 May; 475(10):1739-1753. PubMed ID: 29717023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molybdenum cofactor.
    Mendel RR
    J Biol Chem; 2013 May; 288(19):13165-72. PubMed ID: 23539623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli.
    Reschke S; Duffus BR; Schrapers P; Mebs S; Teutloff C; Dau H; Haumann M; Leimkühler S
    Biochemistry; 2019 Apr; 58(17):2228-2242. PubMed ID: 30945846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaperones in maturation of molybdoenzymes: Why specific is better than general?
    Lemaire ON; Bouillet S; Méjean V; Iobbi-Nivol C; Genest O
    Bioengineered; 2017 Mar; 8(2):133-136. PubMed ID: 27580420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and reversible pyran formation in molybdenum pyranopterin dithiolene models of the molybdenum cofactor.
    Williams BR; Fu Y; Yap GP; Burgmayer SJ
    J Am Chem Soc; 2012 Dec; 134(48):19584-7. PubMed ID: 23157708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational Probes of Molybdenum Cofactor-Protein Interactions in Xanthine Dehydrogenase.
    Dong C; Yang J; Reschke S; Leimkühler S; Kirk ML
    Inorg Chem; 2017 Jun; 56(12):6830-6837. PubMed ID: 28590138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the molybdenum cofactor biosynthetic protein Cnx1G from Arabidopsis thaliana define functions for molybdopterin binding, molybdenum insertion, and molybdenum cofactor stabilization.
    Kuper J; Palmer T; Mendel RR; Schwarz G
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6475-80. PubMed ID: 10823911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis.
    Hover BM; Loksztejn A; Ribeiro AA; Yokoyama K
    J Am Chem Soc; 2013 May; 135(18):7019-32. PubMed ID: 23627491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox reactions of the pyranopterin system of the molybdenum cofactor.
    Nieter Burgmayer SJ; Pearsall DL; Blaney SM; Moore EM; Sauk-Schubert C
    J Biol Inorg Chem; 2004 Jan; 9(1):59-66. PubMed ID: 14628171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of the Moco carrier protein from Rippkaea orientalis.
    Krausze J; Hercher TW; Archna A; Kruse T
    Acta Crystallogr F Struct Biol Commun; 2020 Sep; 76(Pt 9):453-463. PubMed ID: 32880594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdenum cofactor-dependent resistance to N-hydroxylated base analogs in Escherichia coli is independent of MobA function.
    Kozmin SG; Schaaper RM
    Mutat Res; 2007 Jun; 619(1-2):9-15. PubMed ID: 17349664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis.
    Hover BM; Tonthat NK; Schumacher MA; Yokoyama K
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6347-52. PubMed ID: 25941396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function and structure of the molybdenum cofactor carrier protein from Chlamydomonas reinhardtii.
    Fischer K; Llamas A; Tejada-Jimenez M; Schrader N; Kuper J; Ataya FS; Galvan A; Mendel RR; Fernandez E; Schwarz G
    J Biol Chem; 2006 Oct; 281(40):30186-94. PubMed ID: 16873364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shared function and moonlighting proteins in molybdenum cofactor biosynthesis.
    Leimkühler S
    Biol Chem; 2017 Aug; 398(9):1009-1026. PubMed ID: 28284029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion.
    Jacques JG; Fourmond V; Arnoux P; Sabaty M; Etienne E; Grosse S; Biaso F; Bertrand P; Pignol D; Léger C; Guigliarelli B; Burlat B
    Biochim Biophys Acta; 2014 Feb; 1837(2):277-86. PubMed ID: 24212053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.