These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23384403)

  • 41. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.
    Pushie MJ; Cotelesage JJ; George GN
    Metallomics; 2014 Jan; 6(1):15-24. PubMed ID: 24068390
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molybdenum-cofactor-containing enzymes: structure and mechanism.
    Kisker C; Schindelin H; Rees DC
    Annu Rev Biochem; 1997; 66():233-67. PubMed ID: 9242907
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Chlamydomonas reinhardtii molybdenum cofactor enzyme crARC has a Zn-dependent activity and protein partners similar to those of its human homologue.
    Chamizo-Ampudia A; Galvan A; Fernandez E; Llamas A
    Eukaryot Cell; 2011 Oct; 10(10):1270-82. PubMed ID: 21803866
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and characterisation of the Volvox carteri Moco carrier protein.
    Hercher TW; Krausze J; Yang J; Kirk ML; Kruse T
    Biosci Rep; 2020 Nov; 40(11):. PubMed ID: 33084886
    [TBL] [Abstract][Full Text] [Related]  

  • 45. From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme mARC.
    Tejada-Jimenez M; Chamizo-Ampudia A; Calatrava V; Galvan A; Fernandez E; Llamas A
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30545001
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterisation of the pterin molybdenum cofactor in dimethylsulfoxide reductase of Rhodobacter capsulatus.
    Solomon PS; Lane I; Hanson GR; McEwan AG
    Eur J Biochem; 1997 May; 246(1):200-3. PubMed ID: 9210484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly.
    Llamas A; Otte T; Multhaup G; Mendel RR; Schwarz G
    J Biol Chem; 2006 Jul; 281(27):18343-50. PubMed ID: 16636046
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural Framework for Metal Incorporation during Molybdenum Cofactor Biosynthesis.
    Kasaragod VB; Schindelin H
    Structure; 2016 May; 24(5):782-788. PubMed ID: 27112598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro incorporation of nascent molybdenum cofactor into human sulfite oxidase.
    Leimkühler S; Rajagopalan KV
    J Biol Chem; 2001 Jan; 276(3):1837-44. PubMed ID: 11042213
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis.
    Burgmayer SJN; Kirk ML
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005178
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism.
    Kuper J; Llamas A; Hecht HJ; Mendel RR; Schwarz G
    Nature; 2004 Aug; 430(7001):803-6. PubMed ID: 15306815
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anion Binding and Oxidative Modification at the Molybdenum Cofactor of Formate Dehydrogenase from
    Duffus BR; Schrapers P; Schuth N; Mebs S; Dau H; Leimkühler S; Haumann M
    Inorg Chem; 2020 Jan; 59(1):214-225. PubMed ID: 31814403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism.
    Regulski EE; Moy RH; Weinberg Z; Barrick JE; Yao Z; Ruzzo WL; Breaker RR
    Mol Microbiol; 2008 May; 68(4):918-32. PubMed ID: 18363797
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and reactivity studies of model complexes for molybdopterin-dependent enzymes.
    Thapper A; Lorber C; Fryxelius J; Behrens A; Nordlander E
    J Inorg Biochem; 2000 Apr; 79(1-4):67-74. PubMed ID: 10830849
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resonance Raman spectroscopy of pyranopterin molybdenum enzymes.
    Kirk ML; Lepluart J; Yang J
    J Inorg Biochem; 2022 Oct; 235():111907. PubMed ID: 35932756
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization.
    Niedzialkowska E; Mrugała B; Rugor A; Czub MP; Skotnicka A; Cotelesage JJH; George GN; Szaleniec M; Minor W; Lewiński K
    Protein Expr Purif; 2017 Jun; 134():47-62. PubMed ID: 28343996
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of molybdate insertion into pterin-based molybdenum cofactors.
    Probst C; Yang J; Krausze J; Hercher TW; Richers CP; Spatzal T; Kc K; Giles LJ; Rees DC; Mendel RR; Kirk ML; Kruse T
    Nat Chem; 2021 Aug; 13(8):758-765. PubMed ID: 34183818
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells.
    Stallmeyer B; Schwarz G; Schulze J; Nerlich A; Reiss J; Kirsch J; Mendel RR
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1333-8. PubMed ID: 9990024
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria.
    Zupok A; Iobbi-Nivol C; Méjean V; Leimkühler S
    Metallomics; 2019 Oct; 11(10):1602-1624. PubMed ID: 31517366
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamine N-Oxide Reductase.
    Kaufmann P; Duffus BR; Mitrova B; Iobbi-Nivol C; Teutloff C; Nimtz M; Jänsch L; Wollenberger U; Leimkühler S
    Biochemistry; 2018 Feb; 57(7):1130-1143. PubMed ID: 29334455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.