BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 23384567)

  • 1. Training following unilateral cervical spinal cord injury in rats affects the contralesional forelimb.
    Weishaupt N; Vavrek R; Fouad K
    Neurosci Lett; 2013 Feb; 539():77-81. PubMed ID: 23384567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rehabilitative training improves skilled forelimb motor function after cervical unilateral contusion spinal cord injury in rats.
    Lucas-Osma AM; Schmidt EKA; Vavrek R; Bennett DJ; Fouad K; Fenrich KK
    Behav Brain Res; 2022 Mar; 422():113731. PubMed ID: 34979221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
    Hurd C; Weishaupt N; Fouad K
    Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training-induced plasticity in rats with cervical spinal cord injury: effects and side effects.
    Krajacic A; Weishaupt N; Girgis J; Tetzlaff W; Fouad K
    Behav Brain Res; 2010 Dec; 214(2):323-31. PubMed ID: 20573587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot.
    Fenrich KK; May Z; Torres-Espín A; Forero J; Bennett DJ; Fouad K
    Behav Brain Res; 2016 Feb; 299():59-71. PubMed ID: 26611563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rehabilitative training following unilateral pyramidotomy in adult rats improves forelimb function in a non-task-specific way.
    Starkey ML; Bleul C; Maier IC; Schwab ME
    Exp Neurol; 2011 Nov; 232(1):81-9. PubMed ID: 21867701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury.
    Martinez M; Brezun JM; Zennou-Azogui Y; Baril N; Xerri C
    Eur J Neurosci; 2009 Dec; 30(12):2356-67. PubMed ID: 20092578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advantages of delaying the onset of rehabilitative reaching training in rats with incomplete spinal cord injury.
    Krajacic A; Ghosh M; Puentes R; Pearse DD; Fouad K
    Eur J Neurosci; 2009 Feb; 29(3):641-51. PubMed ID: 19222562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effects of BDNF and rehabilitative training on recovery after cervical spinal cord injury.
    Weishaupt N; Li S; Di Pardo A; Sipione S; Fouad K
    Behav Brain Res; 2013 Feb; 239():31-42. PubMed ID: 23131414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delayed Intervention with Intermittent Hypoxia and Task Training Improves Forelimb Function in a Rat Model of Cervical Spinal Injury.
    Prosser-Loose EJ; Hassan A; Mitchell GS; Muir GD
    J Neurotrauma; 2015 Sep; 32(18):1403-12. PubMed ID: 25664481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-directed rehabilitation training intensity thresholds for efficient recovery of skilled forelimb function in rats with cervical spinal cord injury.
    Fenrich KK; Hallworth BW; Vavrek R; Raposo PJF; Misiaszek JE; Bennett DJ; Fouad K; Torres-Espin A
    Exp Neurol; 2021 May; 339():113543. PubMed ID: 33290776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.
    Wong JK; Steward O
    Exp Neurol; 2012 Feb; 233(2):693-707. PubMed ID: 22078754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagus Nerve Stimulation Paired With Rehabilitative Training Enhances Motor Recovery After Bilateral Spinal Cord Injury to Cervical Forelimb Motor Pools.
    Darrow MJ; Torres M; Sosa MJ; Danaphongse TT; Haider Z; Rennaker RL; Kilgard MP; Hays SA
    Neurorehabil Neural Repair; 2020 Mar; 34(3):200-209. PubMed ID: 31969052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor behaviour following incomplete cervical spinal cord injury in the rat.
    Webb AA; Muir GD
    Behav Brain Res; 2005 Dec; 165(2):147-59. PubMed ID: 16157393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery.
    Girgis J; Merrett D; Kirkland S; Metz GA; Verge V; Fouad K
    Brain; 2007 Nov; 130(Pt 11):2993-3003. PubMed ID: 17928316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phrenic motor neuron degeneration compromises phrenic axonal circuitry and diaphragm activity in a unilateral cervical contusion model of spinal cord injury.
    Nicaise C; Hala TJ; Frank DM; Parker JL; Authelet M; Leroy K; Brion JP; Wright MC; Lepore AC
    Exp Neurol; 2012 Jun; 235(2):539-52. PubMed ID: 22465264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed rehabilitation with task-specific therapies improves forelimb function after a cervical spinal cord injury.
    Dai H; Macarthur L; McAtee M; Hockenbury N; Das P; Bregman BS
    Restor Neurol Neurosci; 2011; 29(2):91-103. PubMed ID: 21701061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Course of motor recovery following ventrolateral spinal cord injury in the rat.
    Webb AA; Muir GD
    Behav Brain Res; 2004 Nov; 155(1):55-65. PubMed ID: 15325779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion.
    May Z; Fouad K; Shum-Siu A; Magnuson DSK
    Behav Brain Res; 2015 Sep; 291():26-35. PubMed ID: 25975172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury.
    Torres-Espín A; Forero J; Fenrich KK; Lucas-Osma AM; Krajacic A; Schmidt E; Vavrek R; Raposo P; Bennett DJ; Popovich PG; Fouad K
    Brain; 2018 Jul; 141(7):1946-1962. PubMed ID: 29860396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.