These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23384660)

  • 21. Overshadowing by fixed- and variable-duration stimuli.
    Bonardi C; Mondragón E; Brilot B; Jennings DJ
    Q J Exp Psychol (Hove); 2015; 68(3):523-42. PubMed ID: 25203812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Rescorla-Wagner model: losses in associative strength in compound conditioned stimuli.
    Kremer EF
    J Exp Psychol Anim Behav Process; 1978 Jan; 4(1):22-36. PubMed ID: 621465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of conditioned stimulus (CS) duration, intertrial interval, and I/T ratio on appetitive Pavlovian conditioning.
    Thrailkill EA; Todd TP; Bouton ME
    J Exp Psychol Anim Learn Cogn; 2020 Jul; 46(3):243-255. PubMed ID: 32175762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of stimulus distribution form during trace conditioning.
    Bonardi C; Jennings DJ
    Q J Exp Psychol (Hove); 2019 Feb; 72(2):285-297. PubMed ID: 28805148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potentiation or diminution of discrete motor unconditioned responses (rabbit eyeblink) to an aversive pavlovian unconditioned stimulus by two associative processes: conditioned fear and a conditioned diminution of unconditioned stimulus processing.
    Canli T; Detmer WM; Donegan NH
    Behav Neurosci; 1992 Jun; 106(3):498-508. PubMed ID: 1616616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retrospective revaluation: The phenomenon and its theoretical implications.
    Miller RR; Witnauer JE
    Behav Processes; 2016 Feb; 123():15-25. PubMed ID: 26342855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic stimulation of mPFC pyramidal neurons as a conditioned stimulus supports associative learning in rats.
    Wu GY; Liu GL; Zhang HM; Chen C; Liu SL; Feng H; Sui JF
    Sci Rep; 2015 May; 5():10065. PubMed ID: 25973929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation of the interpositus nucleus during unpaired extinction does not prevent extinction of conditioned eyeblink responses or conditioning-specific reflex modification.
    Burhans LB; Schreurs BG
    Behav Neurosci; 2019 Aug; 133(4):398-413. PubMed ID: 30869952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of the discharge of lateral geniculate neurons during visual learning.
    Gibbs CM; Cohen DH; Broyles JL
    J Neurosci; 1986 Mar; 6(3):627-36. PubMed ID: 3958787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: a computational model.
    Moustafa AA; Wufong E; Servatius RJ; Pang KC; Gluck MA; Myers CE
    Brain Res; 2013 Feb; 1493():48-67. PubMed ID: 23178699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Occasion setting.
    Fraser KM; Holland PC
    Behav Neurosci; 2019 Apr; 133(2):145-175. PubMed ID: 30907616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The strength of aversive and appetitive associations and maladaptive behaviors.
    Itzhak Y; Perez-Lanza D; Liddie S
    IUBMB Life; 2014 Aug; 66(8):559-71. PubMed ID: 25196552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast Cortical Gain Adaptation in the Human Brain by Trial-To-Trial Changes of Associative Strength in Fear Learning.
    Yuan M; Giménez-Fernández T; Méndez-Bértolo C; Moratti S
    J Neurosci; 2018 Sep; 38(38):8262-8276. PubMed ID: 30104342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interference and time: a brief review and an integration.
    Escobar M; Arcediano F; Platt TL; Miller RR
    Rev Neurosci; 2004; 15(6):415-38. PubMed ID: 15656287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time to rethink the neural mechanisms of learning and memory.
    Gallistel CR; Balsam PD
    Neurobiol Learn Mem; 2014 Feb; 108():136-44. PubMed ID: 24309167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of hippocampal manipulations on the classically conditioned nictitating membrane response: simulations by an attentional-associative model.
    Schmajuk NA; Moore JW
    Behav Brain Res; 1989 Mar; 32(2):173-89. PubMed ID: 2923660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Hall-Rodriguez theory of latent inhibition: Further assessment of compound stimulus preexposure effects.
    Rodríguez G; Márquez R; Gil M; Alonso G; Hall G
    J Exp Psychol Anim Learn Cogn; 2014 Oct; 40(4):425-30. PubMed ID: 25546100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of fear of movement-related pain and pain-related anxiety: An associative learning approach using a voluntary movement paradigm.
    Meulders A; Vlaeyen JWS
    Pain; 2012 Jul; 153(7):1504-1513. PubMed ID: 22617631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The comparator hypothesis of conditioned response generation: manifest conditioned excitation and inhibition as a function of relative excitatory strengths of CS and conditioning context at the time of testing.
    Kasprow WJ; Schachtman TR; Miller RR
    J Exp Psychol Anim Behav Process; 1987 Oct; 13(4):395-406. PubMed ID: 3668477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissociating conscious expectancies from automatic-link formation in an electrodermal conditioning paradigm.
    Perruchet P; Grégoire L; Aerts K; Poulin-Charronnat B
    Psychol Res; 2016 Jul; 80(4):581-9. PubMed ID: 26070540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.