These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23384697)

  • 1. Injectable photocrosslinkable nanocomposite based on poly(glycerol sebacate) fumarate and hydroxyapatite: development, biocompatibility and bone regeneration in a rat calvarial bone defect model.
    Bodakhe S; Verma S; Garkhal K; Samal SK; Sharma SS; Kumar N
    Nanomedicine (Lond); 2013 Nov; 8(11):1777-95. PubMed ID: 23384697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates.
    Kerativitayanan P; Gaharwar AK
    Acta Biomater; 2015 Oct; 26():34-44. PubMed ID: 26297886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.
    Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C
    Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.
    Lin D; Yang K; Tang W; Liu Y; Yuan Y; Liu C
    Colloids Surf B Biointerfaces; 2015 Jul; 131():1-11. PubMed ID: 25935647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable chitosan/gelatin/bioactive glass nanocomposite hydrogels for potential bone regeneration: In vitro and in vivo analyses.
    Moreira CDF; Carvalho SM; Florentino RM; França A; Okano BS; Rezende CMF; Mansur HS; Pereira MM
    Int J Biol Macromol; 2019 Jul; 132():811-821. PubMed ID: 30946907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bi-layered constructs of poly(glycerol-sebacate)-β-tricalcium phosphate for bone-soft tissue interface applications.
    Tevlek A; Hosseinian P; Ogutcu C; Turk M; Aydin HM
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():316-324. PubMed ID: 28024592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering.
    Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Triphasic Nanocomposite Coatings on Pretreated Mg Substrates for Biomedical Applications.
    Chai X; Lin J; Xu C; Sun D; Liu HH
    ACS Appl Mater Interfaces; 2024 Oct; 16(40):54716-54730. PubMed ID: 39344064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and evaluation of a nerve guidance conduit capable of Ca
    Zargar Kharazi A; Dini G; Naser R
    J Biomed Mater Res A; 2018 Aug; 106(8):2181-2189. PubMed ID: 29637737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds.
    Deng Y; Bi X; Zhou H; You Z; Wang Y; Gu P; Fan X
    Eur Cell Mater; 2014 Jan; 27():13-24; discussion 24-5. PubMed ID: 24425157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes.
    Gaharwar AK; Patel A; Dolatshahi-Pirouz A; Zhang H; Rangarajan K; Iviglia G; Shin SR; Hussain MA; Khademhosseini A
    Biomater Sci; 2015 Jan; 3(1):46-58. PubMed ID: 26214188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers.
    Wang Z; Ma Y; Wang Y; Liu Y; Chen K; Wu Z; Yu S; Yuan Y; Liu C
    Acta Biomater; 2018 Apr; 71():279-292. PubMed ID: 29549052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and mechanical characterization of bioresorbable, elastomeric nanocomposites from poly(glycerol sebacate)/nanohydroxyapatite for tissue transport applications.
    Rosenbalm TN; Teruel M; Day CS; Donati GL; Morykwas M; Argenta L; Kuthirummal N; Levi-Polyachenko N
    J Biomed Mater Res B Appl Biomater; 2016 Oct; 104(7):1366-73. PubMed ID: 26201533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites.
    Liang SL; Cook WD; Thouas GA; Chen QZ
    Biomaterials; 2010 Nov; 31(33):8516-29. PubMed ID: 20739061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive electrospun fibers of poly(glycerol sebacate) and poly(ε-caprolactone) for cardiac patch application.
    Rai R; Tallawi M; Frati C; Falco A; Gervasi A; Quaini F; Roether JA; Hochburger T; Schubert DW; Seik L; Barbani N; Lazzeri L; Rosellini E; Boccaccini AR
    Adv Healthc Mater; 2015 Sep; 4(13):2012-25. PubMed ID: 26270628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material.
    Sundback CA; Shyu JY; Wang Y; Faquin WC; Langer RS; Vacanti JP; Hadlock TA
    Biomaterials; 2005 Sep; 26(27):5454-64. PubMed ID: 15860202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printing of poly(glycerol sebacate fumarate) gadodiamide-poly(ethylene glycol) diacrylate structures and characterization of mechanical properties for soft tissue applications.
    Ravi P; Wright J; Shiakolas PS; Welch TR
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):664-671. PubMed ID: 30096218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of cyclic strain bioreactor for the upregulation of key tenocyte gene expression on Poly(glycerol-sebacate) (PGS) sheets.
    Deniz P; Guler S; Çelik E; Hosseinian P; Aydin HM
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110293. PubMed ID: 31753347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembled Injectable Nanocomposite Hydrogels Coordinated by in Situ Generated CaP Nanoparticles for Bone Regeneration.
    Kuang L; Ma X; Ma Y; Yao Y; Tariq M; Yuan Y; Liu C
    ACS Appl Mater Interfaces; 2019 May; 11(19):17234-17246. PubMed ID: 31008576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.