BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23384698)

  • 1. A fast analysis method to quantify nanoparticle uptake on a single cell level.
    Torrano AA; Blechinger J; Osseforth C; Argyo C; Reller A; Bein T; Michaelis J; Bräuchle C
    Nanomedicine (Lond); 2013 Nov; 8(11):1815-28. PubMed ID: 23384698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy.
    Torrano AA; Bräuchle C
    Beilstein J Nanotechnol; 2014; 5():1616-24. PubMed ID: 25383274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines.
    dos Santos T; Varela J; Lynch I; Salvati A; Dawson KA
    Small; 2011 Dec; 7(23):3341-9. PubMed ID: 22009913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute quantitation of sub-micrometer particles in cells by flow cytometry.
    Höcherl A; Landfester K; Mailänder V
    Macromol Biosci; 2013 Nov; 13(11):1568-75. PubMed ID: 23966275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent.
    Blechinger J; Bauer AT; Torrano AA; Gorzelanny C; Bräuchle C; Schneider SW
    Small; 2013 Dec; 9(23):3970-80, 3906. PubMed ID: 23681841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymeric nanoparticles of different sizes overcome the cell membrane barrier.
    Lerch S; Dass M; Musyanovych A; Landfester K; Mailänder V
    Eur J Pharm Biopharm; 2013 Jun; 84(2):265-74. PubMed ID: 23422734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells.
    Al-Rawi M; Diabaté S; Weiss C
    Arch Toxicol; 2011 Jul; 85(7):813-26. PubMed ID: 21240478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of Internalized Silica Nanoparticles via STED Microscopy.
    Peuschel H; Ruckelshausen T; Cavelius C; Kraegeloh A
    Biomed Res Int; 2015; 2015():961208. PubMed ID: 26125028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size.
    Gaumet M; Gurny R; Delie F
    Eur J Pharm Sci; 2009 Mar; 36(4-5):465-73. PubMed ID: 19124077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification and Segmentation of Nanoparticle Diffusion Trajectories in Cellular Micro Environments.
    Wagner T; Kroll A; Haramagatti CR; Lipinski HG; Wiemann M
    PLoS One; 2017; 12(1):e0170165. PubMed ID: 28107406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size of submicrometric and nanometric particles affect cellular uptake and biological activity of macrophages in vitro.
    Leclerc L; Rima W; Boudard D; Pourchez J; Forest V; Bin V; Mowat P; Perriat P; Tillement O; Grosseau P; Bernache-Assollant D; Cottier M
    Inhal Toxicol; 2012 Aug; 24(9):580-8. PubMed ID: 22861001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa.
    Roblegg E; Fröhlich E; Meindl C; Teubl B; Zaversky M; Zimmer A
    Nanotoxicology; 2012 Jun; 6(4):399-413. PubMed ID: 21591874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study.
    Zhang B; Li Y; Fang CY; Chang CC; Chen CS; Chen YY; Chang HC
    Small; 2009 Dec; 5(23):2716-21. PubMed ID: 19743434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system.
    Skebo JE; Grabinski CM; Schrand AM; Schlager JJ; Hussain SM
    Int J Toxicol; 2007; 26(2):135-41. PubMed ID: 17454253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells.
    Jiang X; Musyanovych A; Röcker C; Landfester K; Mailänder V; Nienhaus GU
    Nanoscale; 2011 May; 3(5):2028-35. PubMed ID: 21409242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake, excretion and toxicity of nano-sized latex particles on medaka (Oryzias latipes) embryos and larvae.
    Manabe M; Tatarazako N; Kinoshita M
    Aquat Toxicol; 2011 Oct; 105(3-4):576-81. PubMed ID: 21946167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A correlative approach at characterizing nanoparticle mobility and interactions after cellular uptake.
    Schumann C; Schübbe S; Cavelius C; Kraegeloh A
    J Biophotonics; 2012 Feb; 5(2):117-27. PubMed ID: 21987351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of biodegradable nanoparticles with intestinal cells: the effect of surface hydrophilicity.
    Gaumet M; Gurny R; Delie F
    Int J Pharm; 2010 May; 390(1):45-52. PubMed ID: 19833180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.