These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2338497)

  • 1. Electroacoustic production of murine hybridomas.
    Bardsley DW; Liddell JE; Coakley WT; Clarke DJ
    J Immunol Methods; 1990 May; 129(1):41-7. PubMed ID: 2338497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroacoustic fusion of millilitre volumes of cells in physiological medium.
    Bardsley DW; Coakley WT; Jones G; Liddell JE
    J Biochem Biophys Methods; 1989 Oct; 19(4):339-48. PubMed ID: 2614005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement in the basic technology of electrofusion for generation of antibody-producing hybridomas.
    Ohnishi K; Chiba J; Goto Y; Tokunaga T
    J Immunol Methods; 1987 Jun; 100(1-2):181-9. PubMed ID: 3110294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced hybridoma production by electrofusion in strongly hypo-osmolar solutions.
    Schmitt JJ; Zimmermann U
    Biochim Biophys Acta; 1989 Jul; 983(1):42-50. PubMed ID: 2758049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrofusion between heterogeneous-sized mammalian cells in a pellet: potential applications in drug delivery and hybridoma formation.
    Li LH; Hensen ML; Zhao YL; Hui SW
    Biophys J; 1996 Jul; 71(1):479-86. PubMed ID: 8804630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of heterokaryon formation and hybridoma growth in murine and human cell fusions.
    Alkan SS; Mestel F; Jiricka J; Blaser K
    Hybridoma; 1987 Aug; 6(4):371-9. PubMed ID: 3623581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient hybridization of mouse-human cell lines by means of hypo-osmolar electrofusion.
    Zimmermann U; Gessner P; Schnettler R; Perkins S; Foung SK
    J Immunol Methods; 1990 Nov; 134(1):43-50. PubMed ID: 2230148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mink-mouse hybridomas that secrete mink immunoglobulin G.
    Galakhar NL; Djatchenko SN; Fomicheva II; Mechetina LV; Taranin AV; Belousov ES; Nayakshin AM; Baranov OK
    J Immunol Methods; 1988 Nov; 115(1):39-43. PubMed ID: 3192947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type C virus particles in X63-Ag8.653 mouse plasmacytoma cells and in hybridomas derived from it.
    Rudolph M; Karsten U; Micheel B
    Arch Geschwulstforsch; 1983; 53(6):513-9. PubMed ID: 6670912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of electrofusion parameters for efficient production of murine hybridomas.
    Stenger DA; Kubiniec RT; Purucker WJ; Liang H; Hui SW
    Hybridoma; 1988 Oct; 7(5):505-18. PubMed ID: 3198135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved fusion technique. II. Stability and purity of hybrid clones.
    Westerwoudt RJ; Naipal AM; Harrisson CM
    J Immunol Methods; 1984 Mar; 68(1-2):89-101. PubMed ID: 6538588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density separation of spleen cells increases fusion frequency and yield of Ig-producing hybridomas.
    Van Mourik P; Rivero RA; Van der Kwast TH; Lansdorp PM; Zeijlemaker WP
    J Immunol Methods; 1984 Mar; 68(1-2):45-53. PubMed ID: 6323584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colcemid treatment of myeloma prior to cell fusion increases the yield of hybridomas between myeloma and splenocyte.
    Miyahara M; Nakamura H; Hamaguchi Y
    Biochem Biophys Res Commun; 1984 Nov; 124(3):903-8. PubMed ID: 6508785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High yields of specific hybridomas obtained by electrofusion of murine lymphocytes immunized in vivo or in vitro.
    van Duijn G; Langedijk JP; de Boer M; Tager JM
    Exp Cell Res; 1989 Aug; 183(2):463-72. PubMed ID: 2767160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of IgG-producing hybridomas by in vitro stimulation of murine spleen cells.
    Takahashi M; Fuller SA; Hurrell JG
    J Immunol Methods; 1987 Feb; 96(2):247-53. PubMed ID: 3492563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct comparison of electric field-mediated and PEG-mediated cell fusion for the generation of antibody producing hybridomas.
    Karsten U; Stolley P; Walther I; Papsdorf G; Weber S; Conrad K; Pasternak L; Kopp J
    Hybridoma; 1988 Dec; 7(6):627-33. PubMed ID: 3235098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of microfusion techniques to generate human hybridomas.
    Foung S; Perkins S; Kafadar K; Gessner P; Zimmermann U
    J Immunol Methods; 1990 Nov; 134(1):35-42. PubMed ID: 2172386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved electrofusion technique for production of mouse hybridoma cells.
    Vienken J; Zimmermann U
    FEBS Lett; 1985 Mar; 182(2):278-80. PubMed ID: 3979550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitated cell fusion for hybridoma production.
    Conrad MK; Lo MM
    Methods Enzymol; 1990; 184():641-53. PubMed ID: 2167431
    [No Abstract]   [Full Text] [Related]  

  • 20. The efficient production of stable, human monoclonal antibody-secreting hybridomas from EBV-transformed lymphocytes using the mouse myeloma X63-Ag8.653 as a fusion partner.
    Thompson KM; Hough DW; Maddison PJ; Melamed MD; Hughes-Jones N
    J Immunol Methods; 1986 Nov; 94(1-2):7-12. PubMed ID: 3023493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.