BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

805 related articles for article (PubMed ID: 23385218)

  • 1. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.
    Zhou WR; Zheng YF; Leeflang MA; Zhou J
    Acta Biomater; 2013 Nov; 9(10):8488-98. PubMed ID: 23385218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro corrosion and biocompatibility of binary magnesium alloys.
    Gu X; Zheng Y; Cheng Y; Zhong S; Xi T
    Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.
    Liu Y; Wu Y; Bian D; Gao S; Leeflang S; Guo H; Zheng Y; Zhou J
    Acta Biomater; 2017 Oct; 62():418-433. PubMed ID: 28823717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications.
    Qiu KJ; Liu Y; Zhou FY; Wang BL; Li L; Zheng YF; Liu YH
    Acta Biomater; 2015 Mar; 15():254-65. PubMed ID: 25595472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.
    Liu B; Zheng YF
    Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.
    Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy.
    Wei Z; Tian P; Liu X; Zhou B
    Colloids Surf B Biointerfaces; 2014 Sep; 121():451-60. PubMed ID: 25009102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure, mechanical and bio-corrosion properties of Mn-doped Mg-Zn-Ca bulk metallic glass composites.
    Wang J; Huang S; Li Y; Wei Y; Xi X; Cai K
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3832-8. PubMed ID: 23910284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mg-Zr-Sr alloys as biodegradable implant materials.
    Li Y; Wen C; Mushahary D; Sravanthi R; Harishankar N; Pande G; Hodgson P
    Acta Biomater; 2012 Aug; 8(8):3177-88. PubMed ID: 22531570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy.
    Xue P; Li Y; Li K; Zhang D; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():179-86. PubMed ID: 25746260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn-0.8%Li-(Mg, Ag) alloys for guided bone regeneration.
    Zhang Y; Yan Y; Xu X; Lu Y; Chen L; Li D; Dai Y; Kang Y; Yu K
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1021-1034. PubMed ID: 30889634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure, mechanical properties, in vitro degradation and cytotoxicity evaluations of Mg-1.5Y-1.2Zn-0.44Zr alloys for biodegradable metallic implants.
    Fan J; Qiu X; Niu X; Tian Z; Sun W; Liu X; Li Y; Li W; Meng J
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2345-52. PubMed ID: 23498268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sterilization process on surface characteristics and biocompatibility of pure Mg and MgCa alloys.
    Liu XL; Zhou WR; Wu YH; Cheng Y; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4144-54. PubMed ID: 23910326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X=Sn, Ga, In) alloys.
    Kubásek J; Vojtěch D; Lipov J; Ruml T
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2421-32. PubMed ID: 23498278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite.
    Bornapour M; Muja N; Shum-Tim D; Cerruti M; Pekguleryuz M
    Acta Biomater; 2013 Feb; 9(2):5319-30. PubMed ID: 22871640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxicity studies of AZ31D alloy and the effects of carbon dioxide on its biodegradation behavior in vitro.
    Wang J; Qin L; Wang K; Wang J; Yue Y; Li Y; Tang J; Li W
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4416-26. PubMed ID: 23910361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application.
    Zhang E; Yang L; Xu J; Chen H
    Acta Biomater; 2010 May; 6(5):1756-62. PubMed ID: 19941979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
    Li Z; Gu X; Lou S; Zheng Y
    Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys.
    Zhao C; Pan F; Zhang L; Pan H; Song K; Tang A
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1081-1088. PubMed ID: 27772708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New stent surface materials: the impact of polymer-dependent interactions of human endothelial cells, smooth muscle cells, and platelets.
    Busch R; Strohbach A; Rethfeldt S; Walz S; Busch M; Petersen S; Felix S; Sternberg K
    Acta Biomater; 2014 Feb; 10(2):688-700. PubMed ID: 24148751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.