BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23385356)

  • 21. Proteomics Analysis of
    Jia T; Wang J; Chang W; Fan X; Sui X; Song F
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30759832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach.
    Rahman MA; Alam I; Kim YG; Ahn NY; Heo SH; Lee DG; Liu G; Lee BH
    Plant Physiol Biochem; 2015 Apr; 89():112-22. PubMed ID: 25743099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.
    Barkla BJ; Castellanos-Cervantes T; de León JL; Matros A; Mock HP; Perez-Alfocea F; Salekdeh GH; Witzel K; Zörb C
    Proteomics; 2013 Jun; 13(12-13):1885-900. PubMed ID: 23723162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots.
    Jiang Y; Yang B; Harris NS; Deyholos MK
    J Exp Bot; 2007; 58(13):3591-607. PubMed ID: 17916636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic analysis of canola root inoculated with bacteria under salt stress.
    Banaei-Asl F; Bandehagh A; Uliaei ED; Farajzadeh D; Sakata K; Mustafa G; Komatsu S
    J Proteomics; 2015 Jun; 124():88-111. PubMed ID: 25896739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of salt-induced changes in the root proteome of two accessions of the halophyte Cakile maritima.
    Belghith I; Senkler J; Hildebrandt T; Abdelly C; Braun HP; Debez A
    Plant Physiol Biochem; 2018 Sep; 130():20-29. PubMed ID: 29957572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomic discovery of H
    Yu J; Zhang Y; Liu J; Wang L; Liu P; Yin Z; Guo S; Ma J; Lu Z; Wang T; She Y; Miao Y; Ma L; Chen S; Li Y; Dai S
    Planta; 2018 Nov; 248(5):1079-1099. PubMed ID: 30039231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the responses of rice to environmental stress using proteomics.
    Singh R; Jwa NS
    J Proteome Res; 2013 Nov; 12(11):4652-69. PubMed ID: 23984864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrative proteome analysis of Brachypodium distachyon roots and leaves reveals a synergetic responsive network under H2O2 stress.
    Bian YW; Lv DW; Cheng ZW; Gu AQ; Cao H; Yan YM
    J Proteomics; 2015 Oct; 128():388-402. PubMed ID: 26344133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Salt stress signals shape the plant root.
    Galvan-Ampudia CS; Testerink C
    Curr Opin Plant Biol; 2011 Jun; 14(3):296-302. PubMed ID: 21511515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties.
    Guo G; Ge P; Ma C; Li X; Lv D; Wang S; Ma W; Yan Y
    J Proteomics; 2012 Mar; 75(6):1867-85. PubMed ID: 22245046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of proteins associated with ion homeostasis and salt tolerance in barley.
    Wu D; Shen Q; Qiu L; Han Y; Ye L; Jabeen Z; Shu Q; Zhang G
    Proteomics; 2014 Jun; 14(11):1381-92. PubMed ID: 24616274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic study of a tolerant genotype of durum wheat under salt-stress conditions.
    Capriotti AL; Borrelli GM; Colapicchioni V; Papa R; Piovesana S; Samperi R; Stampachiacchiere S; Laganà A
    Anal Bioanal Chem; 2014 Feb; 406(5):1423-35. PubMed ID: 24337188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomics of aluminum tolerance in plants.
    Zheng L; Lan P; Shen RF; Li WF
    Proteomics; 2014 Mar; 14(4-5):566-78. PubMed ID: 24339160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies.
    Ngara R; Ndimba BK
    Proteomics; 2014 Mar; 14(4-5):611-21. PubMed ID: 24339029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana.
    Smith CA; Melino VJ; Sweetman C; Soole KL
    Physiol Plant; 2009 Dec; 137(4):459-72. PubMed ID: 19941623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique.
    Li W; Zhao F; Fang W; Xie D; Hou J; Yang X; Zhao Y; Tang Z; Nie L; Lv S
    Front Plant Sci; 2015; 6():732. PubMed ID: 26442045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane.
    Tang RJ; Yang Y; Yang L; Liu H; Wang CT; Yu MM; Gao XS; Zhang HX
    Plant Cell Environ; 2014 Mar; 37(3):573-88. PubMed ID: 23941462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity.
    Jiang HX; Yang LT; Qi YP; Lu YB; Huang ZR; Chen LS
    BMC Genomics; 2015 Nov; 16():949. PubMed ID: 26573913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative proteomic analysis of canola leaves under salinity stress.
    Bandehagh A; Salekdeh GH; Toorchi M; Mohammadi A; Komatsu S
    Proteomics; 2011 May; 11(10):1965-75. PubMed ID: 21480525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.