BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 23385383)

  • 1. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development.
    Jiang F; Han W; Wu YD
    Phys Chem Chem Phys; 2013 Mar; 15(10):3413-28. PubMed ID: 23385383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of side chain conformations on local conformational features of amino acids and implication for force field development.
    Jiang F; Han W; Wu YD
    J Phys Chem B; 2010 May; 114(17):5840-50. PubMed ID: 20392111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L.
    Jiang F; Zhou CY; Wu YD
    J Phys Chem B; 2014 Jun; 118(25):6983-98. PubMed ID: 24815738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrepancies between conformational distributions of a polyalanine peptide in solution obtained from molecular dynamics force fields and amide I' band profiles.
    Verbaro D; Ghosh I; Nau WM; Schweitzer-Stenner R
    J Phys Chem B; 2010 Dec; 114(51):17201-8. PubMed ID: 21138254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation.
    Serrano L
    J Mol Biol; 1995 Nov; 254(2):322-33. PubMed ID: 7490751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residue-specific force field based on protein coil library. RSFF2: modification of AMBER ff99SB.
    Zhou CY; Jiang F; Wu YD
    J Phys Chem B; 2015 Jan; 119(3):1035-47. PubMed ID: 25358113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues in the coil regions of protein structures: NMR analysis and dissection of a beta-hairpin peptide.
    Griffiths-Jones SR; Sharman GJ; Maynard AJ; Searle MS
    J Mol Biol; 1998 Dec; 284(5):1597-609. PubMed ID: 9878373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino-acid-dependent main-chain torsion-energy terms for protein systems.
    Sakae Y; Okamoto Y
    J Chem Phys; 2013 Feb; 138(6):064103. PubMed ID: 23425457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helix-coil transition of alanine peptides in water: force field dependence on the folded and unfolded structures.
    Gnanakaran S; García AE
    Proteins; 2005 Jun; 59(4):773-82. PubMed ID: 15815975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins.
    Schrauber H; Eisenhaber F; Argos P
    J Mol Biol; 1993 Mar; 230(2):592-612. PubMed ID: 8464066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical Assessment of Current Force Fields. Short Peptide Test Case.
    Vymětal J; Vondrášek J
    J Chem Theory Comput; 2013 Jan; 9(1):441-51. PubMed ID: 26589046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution.
    Hu H; Elstner M; Hermans J
    Proteins; 2003 Feb; 50(3):451-63. PubMed ID: 12557187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dynamics Simulations of 441 Two-Residue Peptides in Aqueous Solution: Conformational Preferences and Neighboring Residue Effects with the Amber ff99SB-ildn-NMR Force Field.
    Li S; Andrews CT; Frembgen-Kesner T; Miller MS; Siemonsma SL; Collingsworth TD; Rockafellow IT; Ngo NA; Campbell BA; Brown RF; Guo C; Schrodt M; Liu YT; Elcock AH
    J Chem Theory Comput; 2015 Mar; 11(3):1315-29. PubMed ID: 26579777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PACE Force Field for Protein Simulations. 1. Full Parameterization of Version 1 and Verification.
    Han W; Wan CK; Jiang F; Wu YD
    J Chem Theory Comput; 2010 Nov; 6(11):3373-89. PubMed ID: 26617092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New-generation amber united-atom force field.
    Yang L; Tan CH; Hsieh MJ; Wang J; Duan Y; Cieplak P; Caldwell J; Kollman PA; Luo R
    J Phys Chem B; 2006 Jul; 110(26):13166-76. PubMed ID: 16805629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Side-chain chi(1) conformations in urea-denatured ubiquitin and protein G from (3)J coupling constants and residual dipolar couplings.
    Vajpai N; Gentner M; Huang JR; Blackledge M; Grzesiek S
    J Am Chem Soc; 2010 Mar; 132(9):3196-203. PubMed ID: 20155903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of conformations sampled by the central amino acid residue in tripeptides inferred from amide I band profiles and NMR scalar coupling constants.
    Schweitzer-Stenner R
    J Phys Chem B; 2009 Mar; 113(9):2922-32. PubMed ID: 19243204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps.
    Stapley BJ; Doig AJ
    J Mol Biol; 1997 Sep; 272(3):456-64. PubMed ID: 9325103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.