These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 23385383)
1. The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development. Jiang F; Han W; Wu YD Phys Chem Chem Phys; 2013 Mar; 15(10):3413-28. PubMed ID: 23385383 [TBL] [Abstract][Full Text] [Related]
2. Influence of side chain conformations on local conformational features of amino acids and implication for force field development. Jiang F; Han W; Wu YD J Phys Chem B; 2010 May; 114(17):5840-50. PubMed ID: 20392111 [TBL] [Abstract][Full Text] [Related]
3. Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L. Jiang F; Zhou CY; Wu YD J Phys Chem B; 2014 Jun; 118(25):6983-98. PubMed ID: 24815738 [TBL] [Abstract][Full Text] [Related]
4. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly. Aliev AE; Courtier-Murias D J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228 [TBL] [Abstract][Full Text] [Related]
5. Discrepancies between conformational distributions of a polyalanine peptide in solution obtained from molecular dynamics force fields and amide I' band profiles. Verbaro D; Ghosh I; Nau WM; Schweitzer-Stenner R J Phys Chem B; 2010 Dec; 114(51):17201-8. PubMed ID: 21138254 [TBL] [Abstract][Full Text] [Related]
6. Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation. Serrano L J Mol Biol; 1995 Nov; 254(2):322-33. PubMed ID: 7490751 [TBL] [Abstract][Full Text] [Related]
7. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins. Avbelj F J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873 [TBL] [Abstract][Full Text] [Related]
8. Residue-specific force field based on protein coil library. RSFF2: modification of AMBER ff99SB. Zhou CY; Jiang F; Wu YD J Phys Chem B; 2015 Jan; 119(3):1035-47. PubMed ID: 25358113 [TBL] [Abstract][Full Text] [Related]
9. Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues in the coil regions of protein structures: NMR analysis and dissection of a beta-hairpin peptide. Griffiths-Jones SR; Sharman GJ; Maynard AJ; Searle MS J Mol Biol; 1998 Dec; 284(5):1597-609. PubMed ID: 9878373 [TBL] [Abstract][Full Text] [Related]
10. Amino-acid-dependent main-chain torsion-energy terms for protein systems. Sakae Y; Okamoto Y J Chem Phys; 2013 Feb; 138(6):064103. PubMed ID: 23425457 [TBL] [Abstract][Full Text] [Related]
11. Helix-coil transition of alanine peptides in water: force field dependence on the folded and unfolded structures. Gnanakaran S; García AE Proteins; 2005 Jun; 59(4):773-82. PubMed ID: 15815975 [TBL] [Abstract][Full Text] [Related]
12. Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. Schrauber H; Eisenhaber F; Argos P J Mol Biol; 1993 Mar; 230(2):592-612. PubMed ID: 8464066 [TBL] [Abstract][Full Text] [Related]
13. Critical Assessment of Current Force Fields. Short Peptide Test Case. Vymětal J; Vondrášek J J Chem Theory Comput; 2013 Jan; 9(1):441-51. PubMed ID: 26589046 [TBL] [Abstract][Full Text] [Related]
14. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution. Hu H; Elstner M; Hermans J Proteins; 2003 Feb; 50(3):451-63. PubMed ID: 12557187 [TBL] [Abstract][Full Text] [Related]
15. Molecular Dynamics Simulations of 441 Two-Residue Peptides in Aqueous Solution: Conformational Preferences and Neighboring Residue Effects with the Amber ff99SB-ildn-NMR Force Field. Li S; Andrews CT; Frembgen-Kesner T; Miller MS; Siemonsma SL; Collingsworth TD; Rockafellow IT; Ngo NA; Campbell BA; Brown RF; Guo C; Schrodt M; Liu YT; Elcock AH J Chem Theory Comput; 2015 Mar; 11(3):1315-29. PubMed ID: 26579777 [TBL] [Abstract][Full Text] [Related]
16. PACE Force Field for Protein Simulations. 1. Full Parameterization of Version 1 and Verification. Han W; Wan CK; Jiang F; Wu YD J Chem Theory Comput; 2010 Nov; 6(11):3373-89. PubMed ID: 26617092 [TBL] [Abstract][Full Text] [Related]
17. New-generation amber united-atom force field. Yang L; Tan CH; Hsieh MJ; Wang J; Duan Y; Cieplak P; Caldwell J; Kollman PA; Luo R J Phys Chem B; 2006 Jul; 110(26):13166-76. PubMed ID: 16805629 [TBL] [Abstract][Full Text] [Related]
18. Side-chain chi(1) conformations in urea-denatured ubiquitin and protein G from (3)J coupling constants and residual dipolar couplings. Vajpai N; Gentner M; Huang JR; Blackledge M; Grzesiek S J Am Chem Soc; 2010 Mar; 132(9):3196-203. PubMed ID: 20155903 [TBL] [Abstract][Full Text] [Related]
19. Distribution of conformations sampled by the central amino acid residue in tripeptides inferred from amide I band profiles and NMR scalar coupling constants. Schweitzer-Stenner R J Phys Chem B; 2009 Mar; 113(9):2922-32. PubMed ID: 19243204 [TBL] [Abstract][Full Text] [Related]
20. Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps. Stapley BJ; Doig AJ J Mol Biol; 1997 Sep; 272(3):456-64. PubMed ID: 9325103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]