These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 233860)

  • 21. Evaluation of an algorithm for detecting visual field defects due to chiasmal and postchiasmal lesions: the neurological hemifield test.
    Boland MV; McCoy AN; Quigley HA; Miller NR; Subramanian PS; Ramulu PY; Murakami P; Danesh-Meyer HV
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):7959-65. PubMed ID: 21896843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing Precision of Hodapp-Parrish-Anderson Criteria for Staging Early Glaucomatous Damage in an Ocular Hypertension Cohort: A Retrospective Study.
    Chakravarti T
    Asia Pac J Ophthalmol (Phila); 2017; 6(1):21-27. PubMed ID: 28161915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detecting visual function abnormalities using the Swedish interactive threshold algorithm and matrix perimetry in eyes with glaucomatous appearance of the optic disc.
    Sakata LM; Deleon-Ortega J; Arthur SN; Monheit BE; Girkin CA
    Arch Ophthalmol; 2007 Mar; 125(3):340-5. PubMed ID: 17353404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of semi-automated kinetic perimetry (SKP) to monitor advanced glaucomatous visual field loss.
    Nevalainen J; Paetzold J; Krapp E; Vonthein R; Johnson CA; Schiefer U
    Graefes Arch Clin Exp Ophthalmol; 2008 Sep; 246(9):1331-9. PubMed ID: 18563431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A clinical comparison of visual field testing with a new automated perimeter, the Humphrey Field Analyzer, and the Goldmann perimeter.
    Beck RW; Bergstrom TJ; Lichter PR
    Ophthalmology; 1985 Jan; 92(1):77-82. PubMed ID: 3974997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Psychophysical investigation of ganglion cell loss in early glaucoma.
    Spry PG; Johnson CA; Mansberger SL; Cioffi GA
    J Glaucoma; 2005 Feb; 14(1):11-9. PubMed ID: 15650598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flicker defined form perimetry in glaucoma suspects with normal achromatic visual fields.
    Reznicek L; Lamparter J; Vogel M; Kampik A; Hirneiß C
    Curr Eye Res; 2015 Jul; 40(7):683-9. PubMed ID: 25207744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning effect and test-retest variability of pulsar perimetry.
    Salvetat ML; Zeppieri M; Parisi L; Johnson CA; Sampaolesi R; Brusini P
    J Glaucoma; 2013 Mar; 22(3):230-7. PubMed ID: 22027935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of clinical optic disc assessment with tests of early visual field loss.
    Landers JA; Goldberg I; Graham SL
    Clin Exp Ophthalmol; 2002 Oct; 30(5):338-42. PubMed ID: 12213157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency-doubling technology perimetry for detection of the development of visual field defects in glaucoma suspect eyes: a prospective study.
    Liu S; Yu M; Weinreb RN; Lai G; Lam DS; Leung CK
    JAMA Ophthalmol; 2014 Jan; 132(1):77-83. PubMed ID: 24177945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency doubling technology perimetry for detection of glaucomatous visual field loss.
    Cello KE; Nelson-Quigg JM; Johnson CA
    Am J Ophthalmol; 2000 Mar; 129(3):314-22. PubMed ID: 10704546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of frequency doubling perimetry in detecting neuro-ophthalmic visual field defects.
    Thomas D; Thomas R; Muliyil JP; George R
    Am J Ophthalmol; 2001 Jun; 131(6):734-41. PubMed ID: 11384569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparisons of methods to detect glaucomatous optic nerve damage.
    O'Connor DJ; Zeyen T; Caprioli J
    Ophthalmology; 1993 Oct; 100(10):1498-503. PubMed ID: 8414410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma?
    Ferreras A; Polo V; Larrosa JM; Pablo LE; Pajarin AB; Pueyo V; Honrubia FM
    J Glaucoma; 2007; 16(4):372-83. PubMed ID: 17571000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new index to monitor central visual field progression in glaucoma.
    de Moraes CG; Furlanetto RL; Ritch R; Liebmann JM
    Ophthalmology; 2014 Aug; 121(8):1531-8. PubMed ID: 24726202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motion automated perimetry identifies early glaucomatous field defects.
    Bosworth CF; Sample PA; Gupta N; Bathija R; Weinreb RN
    Arch Ophthalmol; 1998 Sep; 116(9):1153-8. PubMed ID: 9747672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [First experience with the Heidelberg Edge Perimeter® on patients with ocular hypertension and preperimetric glaucoma].
    Hasler S; Stürmer J
    Klin Monbl Augenheilkd; 2012 Apr; 229(4):319-22. PubMed ID: 22495996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Testing for glaucoma with frequency-doubling perimetry in normals, ocular hypertensives, and glaucoma patients.
    Horn FK; Wakili N; Jünemann AM; Korth M
    Graefes Arch Clin Exp Ophthalmol; 2002 Aug; 240(8):658-65. PubMed ID: 12192460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short-wavelength automated perimetry in low-, medium-, and high-risk ocular hypertensive eyes. Initial baseline results.
    Johnson CA; Brandt JD; Khong AM; Adams AJ
    Arch Ophthalmol; 1995 Jan; 113(1):70-6. PubMed ID: 7826296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation of short-wavelength sensitive mechanisms in normal and glaucomatous visual field regions.
    Demirel S; Johnson CA
    J Glaucoma; 2000 Feb; 9(1):63-73. PubMed ID: 10708234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.