BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23386226)

  • 1. Production of sophorolipids with eicosapentaenoic acid and docosahexaenoic acid from Wickerhamiella domercqiae var. sophorolipid using fish oil as a hydrophobic carbon source.
    Li H; Ma XJ; Wang S; Song X
    Biotechnol Lett; 2013 Jun; 35(6):901-8. PubMed ID: 23386226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sophorolipid production from delignined corncob residue by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576 and Cryptococcus curvatus ATCC 96219.
    Ma XJ; Li H; Wang DX; Song X
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):475-83. PubMed ID: 23532513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface and biological activity of sophorolipid molecules produced by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576.
    Ma X; Li H; Song X
    J Colloid Interface Sci; 2012 Jun; 376(1):165-72. PubMed ID: 22459028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nitrogen sources on production and composition of sophorolipids by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576.
    Ma XJ; Li H; Shao LJ; Shen J; Song X
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1623-32. PubMed ID: 21590287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of sophorolipid production of Wickerhamiella domercqiae var. sophorolipid CGMCC 1576 by low-energy ion beam implantation.
    Li H; Ma X; Shao L; Shen J; Song X
    Appl Biochem Biotechnol; 2012 Jun; 167(3):510-23. PubMed ID: 22562550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sophorolipids production from rice straw via SO3 micro-thermal explosion by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576.
    Liu XG; Ma XJ; Yao RS; Pan CY; He HB
    AMB Express; 2016 Dec; 6(1):60. PubMed ID: 27568226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactivities of sophorolipid with different structures against human esophageal cancer cells.
    Shao L; Song X; Ma X; Li H; Qu Y
    J Surg Res; 2012 Apr; 173(2):286-91. PubMed ID: 21035135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sophorolipids: improvement of the selective production by Starmerella bombicola through the design of nutritional requirements.
    Ribeiro IA; Bronze MR; Castro MF; Ribeiro MH
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1875-87. PubMed ID: 23064480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of selective production of sophorolipids by Rhodotorula bogoriensis through nutritional requirements.
    Ribeiro IA; Bronze MR; Castro MF; Ribeiro MH
    J Mol Recognit; 2012 Nov; 25(11):630-40. PubMed ID: 23108623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of sweetwater as a cost-effective carbon source for sophorolipids production by Starmerella bombicola (ATCC 22214).
    Wadekar SD; Kale SB; Lali AM; Bhowmick DN; Pratap AP
    Prep Biochem Biotechnol; 2012; 42(2):125-42. PubMed ID: 22394062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced-Cost Production of Sophorolipids by
    Qin Z; Guo W; Liu J; Zhao G; Liu M; Song X
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipase specificity towards eicosapentaenoic acid and docosahexaenoic acid depends on substrate structure.
    Lyberg AM; Adlercreutz P
    Biochim Biophys Acta; 2008 Feb; 1784(2):343-50. PubMed ID: 18067872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorption of eicosapentaenoic acid and docosahexaenoic acid from fish oil triacylglycerols or fish oil ethyl esters co-ingested with a high-fat meal.
    Lawson LD; Hughes BG
    Biochem Biophys Res Commun; 1988 Oct; 156(2):960-3. PubMed ID: 2847723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of eicosapentaenoic and docosahexaenoic acids by a yeast (FO726A).
    Guo X; Ota Y
    J Appl Microbiol; 2000 Jul; 89(1):107-15. PubMed ID: 10945786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Correlation between the eicosapentaenoic acid, docosahexaenoic acid and the aggressive behavior in mice].
    Liu C; Cai WX
    Fa Yi Xue Za Zhi; 2011 Apr; 27(2):120-4. PubMed ID: 21604451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction in plasma glucose after lipid changes in mice fed fish oil, docosahexaenoic acid, and eicosapentaenoic acid diets.
    Higuchi T; Shirai N; Suzuki H
    Ann Nutr Metab; 2006; 50(2):147-54. PubMed ID: 16391470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the industrialization of new biosurfactants: Biotechnological opportunities for the lactone esterase gene from Starmerella bombicola.
    Roelants SL; Ciesielska K; De Maeseneire SL; Moens H; Everaert B; Verweire S; Denon Q; Vanlerberghe B; Van Bogaert IN; Van der Meeren P; Devreese B; Soetaert W
    Biotechnol Bioeng; 2016 Mar; 113(3):550-9. PubMed ID: 26301720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification and characterization.
    Daverey A; Pakshirajan K
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):246-53. PubMed ID: 20427162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient display of active Geotrichum sp. lipase on Pichia pastoris cell wall and its application as a whole-cell biocatalyst to enrich EPA and DHA in fish oil.
    Pan XX; Xu L; Zhang Y; Xiao X; Wang XF; Liu Y; Zhang HJ; Yan YJ
    J Agric Food Chem; 2012 Sep; 60(38):9673-9. PubMed ID: 22934819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eicosapentaenoic acid and docosahexaenoic acid from fish oils: differential associations with lipid responses.
    Leigh-Firbank EC; Minihane AM; Leake DS; Wright JW; Murphy MC; Griffin BA; Williams CM
    Br J Nutr; 2002 May; 87(5):435-45. PubMed ID: 12010583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.