These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23386251)

  • 41. Improved glycemic control in mice lacking Sglt1 and Sglt2.
    Powell DR; DaCosta CM; Gay J; Ding ZM; Smith M; Greer J; Doree D; Jeter-Jones S; Mseeh F; Rodriguez LA; Harris A; Buhring L; Platt KA; Vogel P; Brommage R; Shadoan MK; Sands AT; Zambrowicz B
    Am J Physiol Endocrinol Metab; 2013 Jan; 304(2):E117-30. PubMed ID: 23149623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus.
    Song P; Onishi A; Koepsell H; Vallon V
    Expert Opin Ther Targets; 2016 Sep; 20(9):1109-25. PubMed ID: 26998950
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a cell-based nonradioactive glucose uptake assay system for SGLT1 and SGLT2.
    Kanwal A; Singh SP; Grover P; Banerjee SK
    Anal Biochem; 2012 Oct; 429(1):70-5. PubMed ID: 22796500
    [TBL] [Abstract][Full Text] [Related]  

  • 44. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose.
    Powell DR; Smith M; Greer J; Harris A; Zhao S; DaCosta C; Mseeh F; Shadoan MK; Sands A; Zambrowicz B; Ding ZM
    J Pharmacol Exp Ther; 2013 May; 345(2):250-9. PubMed ID: 23487174
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Role of the kidneys in glucose homeostasis. Implication of sodium-glucose cotransporter 2 (SGLT2) in diabetes mellitus treatment].
    Girard J
    Nephrol Ther; 2017 Apr; 13 Suppl 1():S35-S41. PubMed ID: 28577741
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 5,5-Difluoro- and 5-Fluoro-5-methyl-hexose-based C-Glucosides as potent and orally bioavailable SGLT1 and SGLT2 dual inhibitors.
    Xu G; Du F; Kuo GH; Xu JZ; Liang Y; Demarest K; Gaul MD
    Bioorg Med Chem Lett; 2020 Sep; 30(17):127387. PubMed ID: 32738984
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans.
    List JF; Whaley JM
    Kidney Int Suppl; 2011 Mar; (120):S20-7. PubMed ID: 21358698
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and biological evaluation of benzocyclobutane-C-glycosides as potent and orally active SGLT1/SGLT2 dual inhibitors.
    Kuo GH; Gaul MD; Liang Y; Xu JZ; Du F; Hornby P; Xu G; Qi J; Wallace N; Lee S; Grant E; Murray WV; Demarest K
    Bioorg Med Chem Lett; 2018 Apr; 28(7):1182-1187. PubMed ID: 29523385
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A fluorescence method for measurement of glucose transport in kidney cells.
    Blodgett AB; Kothinti RK; Kamyshko I; Petering DH; Kumar S; Tabatabai NM
    Diabetes Technol Ther; 2011 Jul; 13(7):743-51. PubMed ID: 21510766
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for new anti-diabetic agent.
    Nomura S
    Curr Top Med Chem; 2010; 10(4):411-8. PubMed ID: 20180760
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism.
    Layton AT; Vallon V
    Am J Physiol Renal Physiol; 2018 May; 314(5):F969-F984. PubMed ID: 29361669
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SGLT2 inhibitors: molecular design and potential differences in effect.
    Isaji M
    Kidney Int Suppl; 2011 Mar; (120):S14-9. PubMed ID: 21358697
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural selectivity of human SGLT inhibitors.
    Hummel CS; Lu C; Liu J; Ghezzi C; Hirayama BA; Loo DD; Kepe V; Barrio JR; Wright EM
    Am J Physiol Cell Physiol; 2012 Jan; 302(2):C373-82. PubMed ID: 21940664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. LP-925219 maximizes urinary glucose excretion in mice by inhibiting both renal SGLT1 and SGLT2.
    Powell DR; Smith MG; Doree DD; Harris AL; Xiong WW; Mseeh F; Wilson A; Gopinathan S; Diaz D; Goodwin NC; Harrison B; Strobel E; Rawlins DB; Carson K; Zambrowicz B; Ding ZM
    Pharmacol Res Perspect; 2015 Mar; 3(2):e00129. PubMed ID: 26038705
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dapagliflozin Binds Specifically to Sodium-Glucose Cotransporter 2 in the Proximal Renal Tubule.
    Ghezzi C; Yu AS; Hirayama BA; Kepe V; Liu J; Scafoglio C; Powell DR; Huang SC; Satyamurthy N; Barrio JR; Wright EM
    J Am Soc Nephrol; 2017 Mar; 28(3):802-810. PubMed ID: 27620988
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring newer target sodium glucose transporter 2 for the treatment of diabetes mellitus.
    Vaidya HB; Goyal RK
    Mini Rev Med Chem; 2010 Sep; 10(10):905-13. PubMed ID: 21034414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual SGLT1/SGLT2 inhibitor phlorizin reduces glucose transport in experimental peritoneal dialysis.
    Martus G; Bergling K; Öberg CM
    Perit Dial Int; 2023 Mar; 43(2):145-150. PubMed ID: 35188009
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design, synthesis and biological evaluation of (2S,3R,4R,5S,6R)-5-fluoro-6-(hydroxymethyl)-2-aryltetrahydro-2H-pyran-3,4-diols as potent and orally active SGLT dual inhibitors.
    Xu G; Gaul MD; Kuo GH; Du F; Xu JZ; Wallace N; Hinke S; Kirchner T; Silva J; Huebert ND; Lee S; Murray W; Liang Y; Demarest K
    Bioorg Med Chem Lett; 2018 Nov; 28(21):3446-3453. PubMed ID: 30268701
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Discovery of a Potent, Selective Renal Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitor (HSK0935) for the Treatment of Type 2 Diabetes.
    Li Y; Shi Z; Chen L; Zheng S; Li S; Xu B; Liu Z; Liu J; Deng C; Ye F
    J Med Chem; 2017 May; 60(10):4173-4184. PubMed ID: 28447791
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EGT1442, a potent and selective SGLT2 inhibitor, attenuates blood glucose and HbA(1c) levels in db/db mice and prolongs the survival of stroke-prone rats.
    Zhang W; Welihinda A; Mechanic J; Ding H; Zhu L; Lu Y; Deng Z; Sheng Z; Lv B; Chen Y; Roberge JY; Seed B; Wang YX
    Pharmacol Res; 2011 Apr; 63(4):284-93. PubMed ID: 21215314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.