These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 2338639)
41. Evaluation of the deformation behavior of binary systems of methacrylic acid copolymers and hydroxypropyl methylcellulose using a compaction simulator. Tatavarti AS; Muller FX; Hoag SW Int J Pharm; 2008 Feb; 348(1-2):46-53. PubMed ID: 17714895 [TBL] [Abstract][Full Text] [Related]
42. Correlation between compactibility values and excipient cluster size using an in silico approach. Martínez L; Betz G; Villalobos R; Melgoza L; Young PM Drug Dev Ind Pharm; 2013 Feb; 39(2):374-81. PubMed ID: 22568747 [TBL] [Abstract][Full Text] [Related]
43. Particle size distribution and evolution in tablet structure during and after compaction. Fichtner F; Rasmuson A; Alderborn G Int J Pharm; 2005 Mar; 292(1-2):211-25. PubMed ID: 15725568 [TBL] [Abstract][Full Text] [Related]
44. Use of in-die powder densification parameters in the implementation of process analytical technologies for tablet production on industrial scale. Cespi M; Perinelli DR; Casettari L; Bonacucina G; Caporicci G; Rendina F; Palmieri GF Int J Pharm; 2014 Dec; 477(1-2):140-7. PubMed ID: 25304091 [TBL] [Abstract][Full Text] [Related]
45. Investigation des mécanismes de liaison impliqués dans la cohésion des compacts a usage cosmétique. Kompaoré F; Ponchel G; Boelle A; Duchene D Int J Cosmet Sci; 1987 Dec; 9(6):269-78. PubMed ID: 19457014 [TBL] [Abstract][Full Text] [Related]
46. Investigating the effect of particle size and shape on high speed tableting through radial die-wall pressure monitoring. Abdel-Hamid S; Alshihabi F; Betz G Int J Pharm; 2011 Jul; 413(1-2):29-35. PubMed ID: 21515348 [TBL] [Abstract][Full Text] [Related]
47. Prediction of the compressibility of complex mixtures of pharmaceutical powders. Busignies V; Mazel V; Diarra H; Tchoreloff P Int J Pharm; 2012 Oct; 436(1-2):862-8. PubMed ID: 22759643 [TBL] [Abstract][Full Text] [Related]
48. Investigation and modelling approach of the mechanical properties of compacts made with binary mixtures of pharmaceutical excipients. Busignies V; Leclerc B; Porion P; Evesque P; Couarraze G; Tchoreloff P Eur J Pharm Biopharm; 2006 Aug; 64(1):51-65. PubMed ID: 16750353 [TBL] [Abstract][Full Text] [Related]
49. Compaction simulator studies of a new drug substance: effect of particle size and shape, and its binary mixtures with microcrystalline cellulose. Celik M; Ong JT; Chowhan ZT; Samuel GJ Pharm Dev Technol; 1996 Jul; 1(2):119-26. PubMed ID: 9552338 [TBL] [Abstract][Full Text] [Related]
50. Three-dimensional simulations of nanopowder compaction processes by granular dynamics method. Boltachev GSh; Lukyashin KE; Shitov VA; Volkov NB Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012209. PubMed ID: 23944456 [TBL] [Abstract][Full Text] [Related]
52. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications. Barreiro MM; Grana DR; Kokubu GA; Luppo MI; Mintzer S; Vigna G Biomed Mater; 2010 Apr; 5(2):25010. PubMed ID: 20348603 [TBL] [Abstract][Full Text] [Related]
53. Spheroidization of glass powders for glass ionomer cements. Gu YW; Yap AU; Cheang P; Kumar R Biomaterials; 2004 Aug; 25(18):4029-35. PubMed ID: 15046893 [TBL] [Abstract][Full Text] [Related]
54. Yield strength of microcrystalline cellulose: experimental evidence by dielectric spectroscopy. Khomane KS; Bansal AK Int J Pharm; 2013 Oct; 455(1-2):1-4. PubMed ID: 23933052 [TBL] [Abstract][Full Text] [Related]
55. A mechanistic study on tablet ejection force and its sensitivity to lubrication for pharmaceutical powders. Uzondu B; Leung LY; Mao C; Yang CY Int J Pharm; 2018 May; 543(1-2):234-244. PubMed ID: 29621552 [TBL] [Abstract][Full Text] [Related]
56. Effect on particle size on the compaction mechanism and tensile strength of tablets. McKenna A; McCafferty DF J Pharm Pharmacol; 1982 Jun; 34(6):347-51. PubMed ID: 6124615 [TBL] [Abstract][Full Text] [Related]
57. The effect of compression on some physical properties of microcrystalline cellulose powders. Sixsmith D J Pharm Pharmacol; 1977 Jan; 29(1):33-6. PubMed ID: 13179 [TBL] [Abstract][Full Text] [Related]
58. Development of a novel approach towards predicting the milling behaviour of pharmaceutical powders. Kwan CC; Chen YQ; Ding YL; Papadopoulos DG; Bentham AC; Ghadiri M Eur J Pharm Sci; 2004 Dec; 23(4-5):327-36. PubMed ID: 15567285 [TBL] [Abstract][Full Text] [Related]
59. Improvement of flow and bulk density of pharmaceutical powders using surface modification. Jallo LJ; Ghoroi C; Gurumurthy L; Patel U; Davé RN Int J Pharm; 2012 Feb; 423(2):213-25. PubMed ID: 22197769 [TBL] [Abstract][Full Text] [Related]
60. Towards an understanding of the structurally based potential for mechanically activated disordering of small molecule organic crystals. Wildfong PL; Hancock BC; Moore MD; Morris KR J Pharm Sci; 2006 Dec; 95(12):2645-56. PubMed ID: 16924685 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]