BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 23386424)

  • 1. Effects of exercise and hypoxia on heart rate variability and acute mountain sickness.
    Mairer K; Wille M; Grander W; Burtscher M
    Int J Sports Med; 2013 Aug; 34(8):700-6. PubMed ID: 23386424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in cardiac autonomic activity during a passive 8 hour acute exposure to 5 500 m normobaric hypoxia are not related to the development of acute mountain sickness.
    Wille M; Mairer K; Gatterer H; Philippe M; Faulhaber M; Burtscher M
    Int J Sports Med; 2012 Mar; 33(3):186-91. PubMed ID: 22290324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MEDEX 2015: Heart Rate Variability Predicts Development of Acute Mountain Sickness.
    Sutherland A; Freer J; Evans L; Dolci A; Crotti M; Macdonald JH
    High Alt Med Biol; 2017 Sep; 18(3):199-208. PubMed ID: 28418725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of rapid ascent to high altitude on autonomic cardiovascular modulation.
    Chen YC; Lin FC; Shiao GM; Chang SC
    Am J Med Sci; 2008 Sep; 336(3):248-53. PubMed ID: 18794620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symptom progression in acute mountain sickness during a 12-hour exposure to normobaric hypoxia equivalent to 4500 m.
    Burtscher M; Wille M; Menz V; Faulhaber M; Gatterer H
    High Alt Med Biol; 2014 Dec; 15(4):446-51. PubMed ID: 25341048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise intensity typical of mountain climbing does not exacerbate acute mountain sickness in normobaric hypoxia.
    Schommer K; Hammer M; Hotz L; Menold E; Bärtsch P; Berger MM
    J Appl Physiol (1985); 2012 Oct; 113(7):1068-74. PubMed ID: 22858630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI evidence: acute mountain sickness is not associated with cerebral edema formation during simulated high altitude.
    Mairer K; Göbel M; Defrancesco M; Wille M; Messner H; Loizides A; Schocke M; Burtscher M
    PLoS One; 2012; 7(11):e50334. PubMed ID: 23226263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of hypoxemia and exercise on acute mountain sickness symptoms.
    Rupp T; Jubeau M; Millet GY; Perrey S; Esteve F; Wuyam B; Levy P; Verges S
    J Appl Physiol (1985); 2013 Jan; 114(2):180-5. PubMed ID: 23154995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary nitrate supplementation increases acute mountain sickness severity and sense of effort during hypoxic exercise.
    Rossetti GMK; Macdonald JH; Wylie LJ; Little SJ; Newton V; Wood B; Hawkins KA; Beddoe R; Davies HE; Oliver SJ
    J Appl Physiol (1985); 2017 Oct; 123(4):983-992. PubMed ID: 28684588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in prefrontal cerebral oxygenation and microvascular blood volume in hypoxia and possible association with acute mountain sickness.
    Manferdelli G; Marzorati M; Easton C; Porcelli S
    Exp Physiol; 2021 Jan; 106(1):76-85. PubMed ID: 32715540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomic cardiovascular regulation in subjects with acute mountain sickness.
    Lanfranchi PA; Colombo R; Cremona G; Baderna P; Spagnolatti L; Mazzuero G; Wagner P; Perini L; Wagner H; Cavallaro C; Giannuzzi P
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2364-72. PubMed ID: 16055524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory alkalinization and posterior cerebral artery dilatation predict acute mountain sickness severity during 10 h normobaric hypoxia.
    Barclay H; Mukerji S; Kayser B; O'Donnell T; Tzeng YC; Hill S; Knapp K; Legg S; Frei D; Fan JL
    Exp Physiol; 2021 Jan; 106(1):175-190. PubMed ID: 33347666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined methazolamide and theophylline improves oxygen saturation but not exercise performance or altitude illness in acute hypobaric hypoxia.
    Subudhi AW; Evero O; Reitinger J; Davis C; Gronewold J; Nichols AJ; Van-Houten SJ; Roach RC
    Exp Physiol; 2021 Jan; 106(1):117-125. PubMed ID: 32363610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia, Hypobaria, and Exercise Duration Affect Acute Mountain Sickness.
    DiPasquale DM; Strangman GE; Harris NS; Muza SR
    Aerosp Med Hum Perform; 2015 Jul; 86(7):614-9. PubMed ID: 26102141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute mountain sickness, chemosensitivity, and cardiorespiratory responses in humans exposed to hypobaric and normobaric hypoxia.
    Richard NA; Sahota IS; Widmer N; Ferguson S; Sheel AW; Koehle MS
    J Appl Physiol (1985); 2014 Apr; 116(7):945-52. PubMed ID: 23823153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of rapid ascent on the heart rate variability of individuals with and without acute mountain sickness.
    Yih ML; Lin FC; Chao HS; Tsai HC; Chang SC
    Eur J Appl Physiol; 2017 Apr; 117(4):757-766. PubMed ID: 28251400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute Mountain Sickness Symptoms Depend on Normobaric versus Hypobaric Hypoxia.
    DiPasquale DM; Strangman GE; Harris NS; Muza SR
    Biomed Res Int; 2016; 2016():6245609. PubMed ID: 27847819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cardiac response to hypoxia and susceptibility to mountain sickness].
    Richalet JP; Kéromès A; Carillion A; Mehdioui H; Larmignat P; Rathat C
    Arch Mal Coeur Vaiss; 1989 Aug; 82 Spec No 2():49-54. PubMed ID: 2510693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Sex on Heart Rate Variability at High Altitude.
    Boos CJ; Vincent E; Mellor A; O'Hara J; Newman C; Cruttenden R; Scott P; Cooke M; Matu J; Woods DR
    Med Sci Sports Exerc; 2017 Dec; 49(12):2562-2569. PubMed ID: 28731986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High twin resemblance for sensitivity to hypoxia.
    Masschelein E; Van Thienen R; Thomis M; Hespel P
    Med Sci Sports Exerc; 2015 Jan; 47(1):74-81. PubMed ID: 24870565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.