These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 23386427)

  • 21. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions.
    Churkin A; Barash D
    BMC Bioinformatics; 2008 Apr; 9():222. PubMed ID: 18445289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating the predictability of conformational switching in RNA.
    Voss B; Meyer C; Giegerich R
    Bioinformatics; 2004 Jul; 20(10):1573-82. PubMed ID: 14962925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA 3D structure prediction: (1) assessing rna 3D structure similarity from 2D structure similarity.
    Barreda D C JE; Shigenobu Y; Ichiishi E; Del Carpio M CA
    Genome Inform; 2004; 15(2):112-20. PubMed ID: 15706497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleic acid chaperons: a theory of an RNA-assisted protein folding.
    Biro JC
    Theor Biol Med Model; 2005 Sep; 2():35. PubMed ID: 16137324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring Alternative RNA Structure Sets Using MC-Flashfold and db2cm.
    Dallaire P; Major F
    Methods Mol Biol; 2016; 1490():237-51. PubMed ID: 27665603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An algebraic representation of RNA secondary structures.
    Magarshak Y; Benham CJ
    J Biomol Struct Dyn; 1992 Dec; 10(3):465-88. PubMed ID: 1283516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction and design of DNA and RNA structures.
    Andersen ES
    N Biotechnol; 2010 Jul; 27(3):184-93. PubMed ID: 20193785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CONTRAfold: RNA secondary structure prediction without physics-based models.
    Do CB; Woods DA; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e90-8. PubMed ID: 16873527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 3D graphical representation of RNA secondary structures.
    Liao B; Wang TM
    J Biomol Struct Dyn; 2004 Jun; 21(6):827-32. PubMed ID: 15107004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FlexStem: improving predictions of RNA secondary structures with pseudoknots by reducing the search space.
    Chen X; He SM; Bu D; Zhang F; Wang Z; Chen R; Gao W
    Bioinformatics; 2008 Sep; 24(18):1994-2001. PubMed ID: 18586700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Similarity of RNA secondary structures.
    Li C; Wang AH; Xing L
    J Comput Chem; 2007 Jan; 28(2):508-12. PubMed ID: 17186478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pairwise visual comparison of small RNA secondary structures with base pair probabilities.
    Léger S; Costa MBW; Tulpan D
    BMC Bioinformatics; 2019 May; 20(1):293. PubMed ID: 31142266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A graph-topological approach to recognition of pattern and similarity in RNA secondary structures.
    Benedetti G; Morosetti S
    Biophys Chem; 1996 Mar; 59(1-2):179-84. PubMed ID: 8867337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FASTR: A novel data format for concomitant representation of RNA sequence and secondary structure information.
    Bose T; Dutta A; Mh M; Gandhi H; Mande SS
    J Biosci; 2015 Sep; 40(3):571-7. PubMed ID: 26333403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and Characterization of Topological Small RNAs.
    Hassall J; MacDonald P; Cordero T; Rostain W; Jaramillo A
    Methods Mol Biol; 2015; 1316():149-67. PubMed ID: 25967060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracting information from RNA SHAPE data: Kalman filtering approach.
    Vaziri S; Koehl P; Aviran S
    PLoS One; 2018; 13(11):e0207029. PubMed ID: 30462682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. G-SAIP: Graphical Sequence Alignment Through Parallel Programming in the Post-Genomic Era.
    Piña JS; Orozco-Arias S; Tobón-Orozco N; Camargo-Forero L; Tabares-Soto R; Guyot R
    Evol Bioinform Online; 2023; 19():11769343221150585. PubMed ID: 36703866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear Dot Plots.
    Rodrigues N; Weiskopf D
    IEEE Trans Vis Comput Graph; 2018 Jan; 24(1):616-625. PubMed ID: 28866514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sea stack plots: Replacing bar charts with histograms.
    Stuart AD; Ilić M; Simmons BI; Sutherland WJ
    Ecol Evol; 2024 Apr; 14(4):e11237. PubMed ID: 38633526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relaxed Dot Plots: Faithful Visualization of Samples and Their Distribution.
    Rodrigues N; Schulz C; Doring S; Baumgartner D; Krake T; Weiskopf D
    IEEE Trans Vis Comput Graph; 2023 Jan; 29(1):278-287. PubMed ID: 36166524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.