BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23387275)

  • 1. [Mechanisms of support prooxidant-antioxidant balance in the liver tissues of geese in hypo- and hyperoxia].
    Danchenko OO; Pashchenko IuP; Danchenko NM; Zdorovtseva LM
    Ukr Biokhim Zh (1999); 2012; 84(6):109-14. PubMed ID: 23387275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The antioxidant system and lipid peroxidation in chickens during postnatal ontogenesis].
    Kalytka VV; Donchenko HV
    Ukr Biokhim Zh (1978); 1995; 67(2):80-5. PubMed ID: 8592791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to periodic hypoxia and hyperoxia improves resistance of membrane structures in heart, liver, and brain.
    Arkhipenko YV; Sazontova TG; Zhukova AG
    Bull Exp Biol Med; 2005 Sep; 140(3):278-81. PubMed ID: 16307035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of various oxygen concentrations on antioxidant enzymes and the quantity of tissue phospholipid fatty acids in the carp.
    Radi AA; Matkovics B; Csengeri I
    Acta Biol Hung; 1988; 39(1):109-19. PubMed ID: 3254009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Ontogenic characteristics of lipid peroxidation and antioxidant system enzymes in the brain of geese].
    Danchenko OO; Zdorovtseva LM; Kalytka VV
    Ukr Biokhim Zh (1999); 2003; 75(4):91-6. PubMed ID: 14681980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in the membranous lipid composition accelerates lipid peroxidation in young rat hearts subjected to 2 weeks of hypoxia followed by hyperoxia.
    Oka T; Itoi T; Terada N; Nakanishi H; Taguchi R; Hamaoka K
    Circ J; 2008 Aug; 72(8):1359-66. PubMed ID: 18654026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-sitosterol prevents lipid peroxidation and improves antioxidant status and histoarchitecture in rats with 1,2-dimethylhydrazine-induced colon cancer.
    Baskar AA; Al Numair KS; Gabriel Paulraj M; Alsaif MA; Muamar MA; Ignacimuthu S
    J Med Food; 2012 Apr; 15(4):335-43. PubMed ID: 22353013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of indole acetic acid on antioxidant levels and enzyme activities of glucose metabolism in rat liver.
    Oliveira DL; Pugine SM; Ferreira MS; Lins PG; Costa EJ; de Melo MP
    Cell Biochem Funct; 2007; 25(2):195-201. PubMed ID: 16317662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The two faces of reactive oxygen species].
    Zabłocka A; Janusz M
    Postepy Hig Med Dosw (Online); 2008 Mar; 62():118-24. PubMed ID: 18388851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The activity of prooxidant-antioxidant system in loach embryos under the action of microwave radiation].
    Iaremchuk MM; Dyka MV; Sanahurs'kyĭ DI
    Ukr Biochem J; 2014; 86(5):142-50. PubMed ID: 25816598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-specific antioxidant profiles and susceptibility to lipid peroxidation of the newly hatched chick.
    Surai PF; Speake BK; Noble RC; Sparks NH
    Biol Trace Elem Res; 1999 Apr; 68(1):63-78. PubMed ID: 10208657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of normobaric hyperoxide process on antioxidant enzymes activity and on lipid peroxidation processes in the rat's liver.
    Janicki KR
    Ann Univ Mariae Curie Sklodowska Med; 1998; 53():107-13. PubMed ID: 10761234
    [No Abstract]   [Full Text] [Related]  

  • 13. Antioxidant responses to azinphos methyl and carbaryl during the embryonic development of the toad Rhinella (Bufo) arenarum Hensel.
    Ferrari A; Lascano CI; Anguiano OL; D'Angelo AM; Venturino A
    Aquat Toxicol; 2009 Jun; 93(1):37-44. PubMed ID: 19362380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The influence of gamma-irradiation and alimentry factors on prooxidant-antioxidant rat's liver and blood system].
    Nikitchenko IuV; Padalko VI; Tkachenko VN; Zolotukhina AA; Tovstiak VV
    Radiats Biol Radioecol; 2008; 48(2):171-6. PubMed ID: 18666649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperoxia causes increases in antioxidant enzyme activity in fetal type II pneumocytes.
    Bhandari V; Maulik N; Kresch M
    Ann N Y Acad Sci; 1996 Sep; 793():504-5. PubMed ID: 8906200
    [No Abstract]   [Full Text] [Related]  

  • 16. Dose dependent effect of ricin on DNA damage and antioxidant enzymes in mice.
    Kumar O; Lakshmana Rao PV; Pradhan S; Jayaraj R; Bhaskar AS; Nashikkar AB; Vijayaraghavan R
    Cell Mol Biol (Noisy-le-grand); 2007 May; 53(5):92-102. PubMed ID: 17543238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Adaptation to hypoxia and hyperoxia improves physical endurance: the role of reactive oxygen species and redox-signaling].
    Sazontova TG; Glazachev OS; Bolotova AV; Dudnik EN; Striapko NV; Bedareva IV; Anchishkina NA; Arkhipenko IuV
    Ross Fiziol Zh Im I M Sechenova; 2012 Jun; 98(6):793-807. PubMed ID: 23013017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro nicotine-induced oxidative stress in mice peritoneal macrophages: a dose-dependent approach.
    Mahapatra SK; Das S; Bhattacharjee S; Gautam N; Majumdar S; Roy S
    Toxicol Mech Methods; 2009 Feb; 19(2):100-8. PubMed ID: 19778253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased antioxidant status and increased lipid peroxidation in rats after methanol intoxication.
    Skrzydlewska E
    Rocz Akad Med Bialymst; 1996; 41(2):397-404. PubMed ID: 9020552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mitochondrial thiol-disulfide system under acute hypoxia and hypoxic-hyperoxic adaptation].
    Honchar OO; Man'kovs'ka IM
    Ukr Biochem J; 2014; 86(1):93-100. PubMed ID: 24834722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.