BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23387335)

  • 1. Structural and dynamic features of Candida rugosa lipase 1 in water, octane, toluene, and ionic liquids BMIM-PF6 and BMIM-NO3.
    Burney PR; Pfaendtner J
    J Phys Chem B; 2013 Mar; 117(9):2662-70. PubMed ID: 23387335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the physicochemical properties of binary ionic liquids on lipase activity and stability.
    Yao P; Yu X; Huang X
    Int J Biol Macromol; 2015; 77():243-9. PubMed ID: 25841366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids.
    Hongwei Y; Jinchuan W; Chi Bun C
    Chirality; 2005 Jan; 17(1):16-21. PubMed ID: 15515047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein structure and dynamics in ionic liquids. Insights from molecular dynamics simulation studies.
    Micaêlo NM; Soares CM
    J Phys Chem B; 2008 Mar; 112(9):2566-72. PubMed ID: 18266354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of Candida rugosa lipase at alkane-aqueous interfaces: a molecular dynamics study.
    James JJ; Lakshmi BS; Seshasayee AS; Gautam P
    FEBS Lett; 2007 Sep; 581(23):4377-83. PubMed ID: 17765226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced lipase-catalyzed synthesis of sugar fatty acid esters using supersaturated sugar solution in ionic liquids.
    Shin DW; Mai NL; Bae SW; Koo YM
    Enzyme Microb Technol; 2019 Jul; 126():18-23. PubMed ID: 31000160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme catalysis in organic solvents: influence of water content, solvent composition and temperature on Candida rugosa lipase catalyzed transesterification.
    Herbst D; Peper S; Niemeyer B
    J Biotechnol; 2012 Dec; 162(4):398-403. PubMed ID: 22465292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between enhanced enzyme activity and structural dynamics in ionic liquids: a combined computational and experimental study.
    Kim HS; Ha SH; Sethaphong L; Koo YM; Yingling YG
    Phys Chem Chem Phys; 2014 Feb; 16(7):2944-53. PubMed ID: 24424278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of water activity on the lipase catalyzed esterification of geraniol in ionic liquid [bmim]PF6.
    Barahona D; Pfromm PH; Rezac ME
    Biotechnol Bioeng; 2006 Feb; 93(2):318-24. PubMed ID: 16196056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic synthesis of phytosterol esters catalyzed by Candida rugosa lipase in water-in-[Bmim]PF6 microemulsion.
    Zeng C; Qi S; Li Z; Luo R; Yang B; Wang Y
    Bioprocess Biosyst Eng; 2015 May; 38(5):939-46. PubMed ID: 25575761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Solvent Hydrophilicity on the Enzymatic Ring-Opening Polymerization of L-Lactide by
    Curie CA; Darmawan MA; Dianursanti D; Budhijanto W; Gozan M
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal stability enhancements of Candida rugosa lipase in ionic liquids.
    Fráter T; Ulbert O; Bélafi-Bakó K; Gubicza L
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):293-6. PubMed ID: 15296180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton transfer between tryptophan and ionic liquid solvents studied with molecular dynamics simulations.
    Klähn M; Seduraman A; Wu P
    J Phys Chem B; 2011 Jun; 115(25):8231-41. PubMed ID: 21591787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethyl oleate synthesis using Candida rugosa lipase in a solvent-free system. Role of hydrophobic interactions.
    Trubiano G; Borio D; Ferreira ML
    Biomacromolecules; 2004; 5(5):1832-40. PubMed ID: 15360295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic resolution of (+/-)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases.
    Shah S; Gupta MN
    Bioorg Med Chem Lett; 2007 Feb; 17(4):921-4. PubMed ID: 17157018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of Candida rugosa lipase: the role of organic solvent.
    Tejo BA; Salleh AB; Pleiss J
    J Mol Model; 2004 Dec; 10(5-6):358-66. PubMed ID: 15597204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical parameters for solvent acidity, basicity, dipolarity, and polarizability of the ionic liquids [BMIM][BF4] and [BMIM][PF6].
    del Valle JC; García Blanco F; Catalán J
    J Phys Chem B; 2015 Apr; 119(13):4683-92. PubMed ID: 25756344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic synthesis of poly(ε-caprolactone) in monocationic and dicationic ionic liquids.
    Wu C; Zhang Z; He F; Zhuo R
    Biotechnol Lett; 2013 Jun; 35(6):879-85. PubMed ID: 23479410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation, characterization, and catalytic properties of a novel lipase which is activated in ionic liquids and organic solvents.
    Akbari N; Daneshjoo S; Akbari J; Khajeh K
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):785-94. PubMed ID: 21728029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification with functionalized ionic liquids: a novel method to improve the enzymatic properties of Candida rugosa lipase.
    Hu Y; Yang J; Jia R; Ding Y; Li S; Huang H
    Bioprocess Biosyst Eng; 2014 Aug; 37(8):1617-26. PubMed ID: 24488260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.