BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

770 related articles for article (PubMed ID: 23387515)

  • 1. Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones.
    Mahmoud MA; Narayanan R; El-Sayed MA
    Acc Chem Res; 2013 Aug; 46(8):1795-805. PubMed ID: 23387515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallic double shell hollow nanocages: the challenges of their synthetic techniques.
    Mahmoud MA; El-Sayed MA
    Langmuir; 2012 Mar; 28(9):4051-9. PubMed ID: 22239672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evidence for the nanocage effect in catalysis with hollow nanoparticles.
    Mahmoud MA; Saira F; El-Sayed MA
    Nano Lett; 2010 Sep; 10(9):3764-9. PubMed ID: 20701250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time dependence and signs of the shift of the surface plasmon resonance frequency in nanocages elucidate the nanocatalysis mechanism in hollow nanoparticles.
    Mahmoud MA; El-Sayed MA
    Nano Lett; 2011 Mar; 11(3):946-53. PubMed ID: 21302928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the Catalytic Efficiency on the Surface of Hollow Gold Nanoparticles by Introducing an Inner Thin Layer of Platinum or Palladium.
    Mahmoud MA; Garlyyev B; El-Sayed MA
    J Phys Chem Lett; 2014 Dec; 5(23):4088-94. PubMed ID: 26278937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability.
    Narayanan R; El-Sayed MA
    J Phys Chem B; 2005 Jul; 109(26):12663-76. PubMed ID: 16852568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications.
    Zhang H; Jin M; Xiong Y; Lim B; Xia Y
    Acc Chem Res; 2013 Aug; 46(8):1783-94. PubMed ID: 23163781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomically precise gold nanoclusters as new model catalysts.
    Li G; Jin R
    Acc Chem Res; 2013 Aug; 46(8):1749-58. PubMed ID: 23534692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture engineering toward highly active palladium integrated titanium dioxide yolk-double-shell nanoreactor for catalytic applications.
    Liu B; Wang Q; Yu S; Jing P; Liu L; Xu G; Zhang J
    Nanoscale; 2014 Oct; 6(20):11887-97. PubMed ID: 25174813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembling nanostructures for effective catalysis: supported palladium nanoparticle multicores coated by a hollow and nanoporous zirconia shell.
    Wang Y; Biradar AV; Asefa T
    ChemSusChem; 2012 Jan; 5(1):132-9. PubMed ID: 22095642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalysis in gold nanocage nanoreactors.
    Yen CW; Mahmoud MA; El-Sayed MA
    J Phys Chem A; 2009 Apr; 113(16):4340-5. PubMed ID: 19271721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions.
    Xie S; Jin M; Tao J; Wang Y; Xie Z; Zhu Y; Xia Y
    Chemistry; 2012 Nov; 18(47):14974-80. PubMed ID: 23108763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar single crystal.
    Mahmoud MA; Tabor CE; El-Sayed MA; Ding Y; Wang ZL
    J Am Chem Soc; 2008 Apr; 130(14):4590-1. PubMed ID: 18345676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.
    Mahmoud MA
    Langmuir; 2013 May; 29(21):6253-61. PubMed ID: 23647422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.