These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 23387661)
1. A novel rheo-optical device for studying complex fluids in a double shear plate geometry. Boitte JB; Vizcaïno C; Benyahia L; Herry JM; Michon C; Hayert M Rev Sci Instrum; 2013 Jan; 84(1):013709. PubMed ID: 23387661 [TBL] [Abstract][Full Text] [Related]
2. A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow. Wu YL; Brand JH; van Gemert JL; Verkerk J; Wisman H; van Blaaderen A; Imhof A Rev Sci Instrum; 2007 Oct; 78(10):103902. PubMed ID: 17979430 [TBL] [Abstract][Full Text] [Related]
3. A rheo-optical apparatus for real time kinetic studies on shear-induced alignment of self-assembled soft matter with small sample volumes. Laiho A; Ikkala O Rev Sci Instrum; 2007 Jan; 78(1):015109. PubMed ID: 17503948 [TBL] [Abstract][Full Text] [Related]
4. Stress driven shear bands and the effect of confinement on their structures--a rheological, flow visualization, and Rheo-SALS study. Herle V; Fischer P; Windhab EJ Langmuir; 2005 Sep; 21(20):9051-7. PubMed ID: 16171332 [TBL] [Abstract][Full Text] [Related]
5. A sliding plate microgap rheometer for the simultaneous measurement of shear stress and first normal stress difference. Baik SJ; Moldenaers P; Clasen C Rev Sci Instrum; 2011 Mar; 82(3):035121. PubMed ID: 21456802 [TBL] [Abstract][Full Text] [Related]
6. Laboratory evaluation of the Acapella device: pressure characteristics under different conditions, and a software tool to optimize its practical use. Alves Silva CE; Santos JG; Jansen JM; de Melo PL Respir Care; 2009 Nov; 54(11):1480-7. PubMed ID: 19863832 [TBL] [Abstract][Full Text] [Related]
7. Transition processes from the lamellar to the onion state with increasing temperature under shear flow in a nonionic surfactant/water system studied by Rheo-SAXS. Ito M; Kosaka Y; Kawabata Y; Kato T Langmuir; 2011 Jun; 27(12):7400-9. PubMed ID: 21574584 [TBL] [Abstract][Full Text] [Related]
8. A new instrument for dynamic helical squeeze flow which superposes oscillatory shear and oscillatory squeeze flow. Kim JH; Ahn KH Rev Sci Instrum; 2012 Aug; 83(8):085105. PubMed ID: 22938330 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Li M; Ku DN; Forest CR Lab Chip; 2012 Apr; 12(7):1355-62. PubMed ID: 22358184 [TBL] [Abstract][Full Text] [Related]
10. Aggregation behavior of latex particles in shear flow confined between two parallel plates. Kikuchi Y; Yamada H; Kunimori H; Tsukada T; Hozawa M; Yokoyama C; Kubo M Langmuir; 2005 Apr; 21(8):3273-8. PubMed ID: 15807564 [TBL] [Abstract][Full Text] [Related]
11. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow. Colbourne AA; Blythe TW; Barua R; Lovett S; Mitchell J; Sederman AJ; Gladden LF J Magn Reson; 2018 Jan; 286():30-35. PubMed ID: 29179023 [TBL] [Abstract][Full Text] [Related]
12. Rapid integrated rheo-optical and polarized Fourier-transform infrared spectrometry measurement system for polymer films undergoing chemo-mechanical changes. Unsal E; Nugay II; Offenbach I; Gross M; Manning C; Cakmak M Rev Sci Instrum; 2013 Jul; 84(7):073901. PubMed ID: 23902078 [TBL] [Abstract][Full Text] [Related]
14. Validation of temperature-controlled rheo-MRI measurements in a submillimeter-gap Couette geometry. Milc KW; Serial MR; Philippi J; Dijksman JA; van Duynhoven JPM; Terenzi C Magn Reson Chem; 2022 Jul; 60(7):606-614. PubMed ID: 33788305 [TBL] [Abstract][Full Text] [Related]
15. Design and testing of low intensity laser biostimulator. Valchinov ES; Pallikarakis NE Biomed Eng Online; 2005 Jan; 4():5. PubMed ID: 15649327 [TBL] [Abstract][Full Text] [Related]
16. Shear small-angle light scattering studies of shear-induced concentration fluctuations and steady state viscoelastic properties. Endoh MK; Takenaka M; Inoue T; Watanabe H; Hashimoto T J Chem Phys; 2008 Apr; 128(16):164911. PubMed ID: 18447504 [TBL] [Abstract][Full Text] [Related]
17. Rheological evaluation of petroleum jelly as a base material in ointment and cream formulations: steady shear flow behavior. Park EK; Song KW Arch Pharm Res; 2010 Jan; 33(1):141-50. PubMed ID: 20191355 [TBL] [Abstract][Full Text] [Related]
18. Rheo-small-angle neutron scattering at the National Institute of Standards and Technology Center for Neutron Research. Porcar L; Pozzo D; Langenbucher G; Moyer J; Butler PD Rev Sci Instrum; 2011 Aug; 82(8):083902. PubMed ID: 21895253 [TBL] [Abstract][Full Text] [Related]
19. Rheo-SAXS investigation of shear-thinning behaviour of very anisometric repulsive disc-like clay suspensions. Philippe AM; Baravian C; Imperor-Clerc M; De Silva J; Paineau E; Bihannic I; Davidson P; Meneau F; Levitz P; Michot LJ J Phys Condens Matter; 2011 May; 23(19):194112. PubMed ID: 21525562 [TBL] [Abstract][Full Text] [Related]
20. A multi-axis confocal rheoscope for studying shear flow of structured fluids. Lin NY; McCoy JH; Cheng X; Leahy B; Israelachvili JN; Cohen I Rev Sci Instrum; 2014 Mar; 85(3):033905. PubMed ID: 24689598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]