BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23387755)

  • 1. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis.
    Godfrey DJ; McAdams HP; Dobbins JT
    Med Phys; 2013 Feb; 40(2):021907. PubMed ID: 23387755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic noise characteristics in matrix inversion tomosynthesis (MITS).
    Godfrey DJ; McAdams HP; Dobbins JT
    Med Phys; 2009 May; 36(5):1521-32. PubMed ID: 19544768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the matrix inversion tomosynthesis (MITS) impulse response and modulation transfer function characteristics for chest imaging.
    Godfrey DJ; McAdams HP; Dobbins JT
    Med Phys; 2006 Mar; 33(3):655-67. PubMed ID: 16878569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital tomosynthesis of hand joints for arthritis assessment.
    Duryea J; Dobbins JT; Lynch JA
    Med Phys; 2003 Mar; 30(3):325-33. PubMed ID: 12674232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual-view digital tomosynthesis imaging technique for improved chest imaging.
    Zhong Y; Lai CJ; Wang T; Shaw CC
    Med Phys; 2015 Sep; 42(9):5238-51. PubMed ID: 26328973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of reconstruction algorithms for C-arm mammography tomosynthesis.
    Rakowski JT; Dennis MJ
    Med Phys; 2006 Aug; 33(8):3018-32. PubMed ID: 16964880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oblique reconstructions in tomosynthesis. I. Linear systems theory.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111911. PubMed ID: 24320444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-plane artifact suppression in tomosynthesis using 3D CT image data.
    Kim JG; Jin SO; Cho MH; Lee SY
    Biomed Eng Online; 2011 Dec; 10():106. PubMed ID: 22151538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system.
    Wu M; Fahrig R
    Med Phys; 2014 Nov; 41(11):111905. PubMed ID: 25370638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of super-resolution in digital breast tomosynthesis.
    Acciavatti RJ; Maidment AD
    Med Phys; 2012 Dec; 39(12):7518-39. PubMed ID: 23231301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependency of image quality on system configuration parameters in a stationary digital breast tomosynthesis system.
    Tucker AW; Lu J; Zhou O
    Med Phys; 2013 Mar; 40(3):031917. PubMed ID: 23464332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital tomosynthesis of the chest for lung nodule detection: interim sensitivity results from an ongoing NIH-sponsored trial.
    James TD; McAdams HP; Song JW; Li CM; Godfrey DJ; DeLong DM; Paik SH; Martinez-Jimenez S
    Med Phys; 2008 Jun; 35(6):2554-7. PubMed ID: 18649488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a constrained paired-view technique in iterative reconstruction for breast tomosynthesis.
    Wu G; Mainprize JG; Yaffe MJ
    Med Phys; 2013 Oct; 40(10):101901. PubMed ID: 24089903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grating-based phase contrast tomosynthesis imaging: proof-of-concept experimental studies.
    Li K; Ge Y; Garrett J; Bevins N; Zambelli J; Chen GH
    Med Phys; 2014 Jan; 41(1):011903. PubMed ID: 24387511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved digital chest tomosynthesis image quality by use of a projection-based dual-energy virtual monochromatic convolutional neural network with super resolution.
    Gomi T; Hara H; Watanabe Y; Mizukami S
    PLoS One; 2020; 15(12):e0244745. PubMed ID: 33382766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental validation of a three-dimensional linear system model for breast tomosynthesis.
    Zhao B; Zhou J; Hu YH; Mertelmeier T; Ludwig J; Zhao W
    Med Phys; 2009 Jan; 36(1):240-51. PubMed ID: 19235392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects with high-attenuation features.
    Levakhina YM; Müller J; Duschka RL; Vogt F; Barkhausen J; Buzug TM
    Med Phys; 2013 Mar; 40(3):031106. PubMed ID: 23464286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.