BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23387755)

  • 21. Three-dimensional linear system analysis for breast tomosynthesis.
    Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5219-32. PubMed ID: 19175081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A computer simulation platform for the optimization of a breast tomosynthesis system.
    Zhou J; Zhao B; Zhao W
    Med Phys; 2007 Mar; 34(3):1098-109. PubMed ID: 17441255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Full 3-D modulation transfer function estimation of tomosynthesis system using modified Richardson-Lucy deconvolution.
    Song H; Lee C; Baek J
    Med Phys; 2024 Apr; 51(4):2510-2525. PubMed ID: 38011539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Digital Tomosynthesis System Geometry Analysis Using Convolution-Based Blur-and-Add (BAA) Model.
    Wu M; Yoon S; Solomon EG; Star-Lack J; Pelc N; Fahrig R
    IEEE Trans Med Imaging; 2016 Jan; 35(1):131-43. PubMed ID: 26208308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of algorithms for out-of-plane artifacts removal in digital tomosynthesis reconstructions.
    Bliznakova K; Bliznakov Z; Buliev I
    Comput Methods Programs Biomed; 2012 Jul; 107(1):75-83. PubMed ID: 22056810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry.
    Bliznakova K; Kolitsi Z; Speller RD; Horrocks JA; Tromba G; Pallikarakis N
    Med Phys; 2010 Apr; 37(4):1893-903. PubMed ID: 20443511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-attenuation artifact reduction in breast tomosynthesis using a novel reconstruction algorithm.
    Dustler M; Wicklein J; Förnvik H; Boita J; Bakic P; Lång K
    Eur J Radiol; 2019 Jul; 116():21-26. PubMed ID: 31153567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT.
    Siewerdsen JH; Daly MJ; Bakhtiar B; Moseley DJ; Richard S; Keller H; Jaffray DA
    Med Phys; 2006 Jan; 33(1):187-97. PubMed ID: 16485425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method for selective removal of out-of-plane structures in digital tomosynthesis.
    Kolitsi Z; Panayiotakis G; Pallikarakis N
    Med Phys; 1993; 20(1):47-50. PubMed ID: 8455511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thick slices from tomosynthesis data sets: phantom study for the evaluation of different algorithms.
    Diekmann F; Meyer H; Diekmann S; Puong S; Muller S; Bick U; Rogalla P
    J Digit Imaging; 2009 Oct; 22(5):519-26. PubMed ID: 17955296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study.
    Shan J; Tucker AW; Lee YZ; Heath MD; Wang X; Foos DH; Lu J; Zhou O
    Phys Med Biol; 2015 Jan; 60(1):81-100. PubMed ID: 25478786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Digital tomosynthesis of the thorax: the influence of respiratory motion artifacts on lung nodule detection.
    Kim SM; Chung MJ; Lee KS; Kang H; Song IY; Lee EJ; Hwang HS
    Acta Radiol; 2013 Jul; 54(6):634-9. PubMed ID: 23528563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis.
    Xu S; Lu J; Zhou O; Chen Y
    Med Phys; 2015 Sep; 42(9):5377-90. PubMed ID: 26328987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multigrid reconstruction with block-iterative updates for breast tomosynthesis.
    Michielsen K; Nuyts J
    Med Phys; 2015 Nov; 42(11):6537-48. PubMed ID: 26520744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of angular dose distribution on the detection of microcalcifications in digital breast tomosynthesis.
    Hu YH; Zhao W
    Med Phys; 2011 May; 38(5):2455-66. PubMed ID: 21776781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oblique reconstructions in tomosynthesis. II. Super-resolution.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111912. PubMed ID: 24320445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient low-dose CT artifact mitigation using an artifact-matched prior scan.
    Xu W; Mueller K
    Med Phys; 2012 Aug; 39(8):4748-60. PubMed ID: 22894400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implementation and evaluation of an expectation maximization reconstruction algorithm for gamma emission breast tomosynthesis.
    Gong Z; Klanian K; Patel T; Sullivan O; Williams MB
    Med Phys; 2012 Dec; 39(12):7580-92. PubMed ID: 23231306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Digital x-ray tomosynthesis: current state of the art and clinical potential.
    Dobbins JT; Godfrey DJ
    Phys Med Biol; 2003 Oct; 48(19):R65-106. PubMed ID: 14579853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.