These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23387765)

  • 1. Modeling the Brownian relaxation of nanoparticle ferrofluids: comparison with experiment.
    Martens MA; Deissler RJ; Wu Y; Bauer L; Yao Z; Brown R; Griswold M
    Med Phys; 2013 Feb; 40(2):022303. PubMed ID: 23387765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.
    Soto-Aquino D; Rosso D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056306. PubMed ID: 22181497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Study of Brownian and Néel Relaxation Phenomena in Ferrofluids by Mössbauer Spectroscopy.
    Landers J; Salamon S; Remmer H; Ludwig F; Wende H
    Nano Lett; 2016 Feb; 16(2):1150-5. PubMed ID: 26788750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of magnetic nanoparticle relaxation time.
    Weaver JB; Kuehlert E
    Med Phys; 2012 May; 39(5):2765-70. PubMed ID: 22559648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetization relaxation dynamics in polydisperse ferrofluids.
    Ivanov AO; Camp PJ
    Phys Rev E; 2023 Mar; 107(3-1):034604. PubMed ID: 37072981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of Brownian and Néel relaxation times on magnetic field strength.
    Deissler RJ; Wu Y; Martens MA
    Med Phys; 2014 Jan; 41(1):012301. PubMed ID: 24387522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of magnetic chromatography to sort polydisperse nanoparticles in ferrofluids.
    Forge D; Gossuin Y; Roch A; Laurent S; Elst LV; Muller RN
    Contrast Media Mol Imaging; 2010; 5(3):126-32. PubMed ID: 20586034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetoviscosity in dilute ferrofluids from rotational brownian dynamics simulations.
    Soto-Aquino D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046310. PubMed ID: 21230393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Field Orientation and Dynamics of Ferrofluids Studied by Mössbauer Spectroscopy.
    Landers J; Salamon S; Remmer H; Ludwig F; Wende H
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3160-3168. PubMed ID: 30582794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.
    Arami H; Ferguson RM; Khandhar AP; Krishnan KM
    Med Phys; 2013 Jul; 40(7):071904. PubMed ID: 23822441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No aging phenomena in ferrofluids: the influence of coating on interparticle interactions of maghemite nanoparticles.
    Rabias I; Fardis M; Devlin E; Boukos N; Tsitrouli D; Papavassiliou G
    ACS Nano; 2008 May; 2(5):977-83. PubMed ID: 19206495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations.
    Reeves DB; Weaver JB
    J Appl Phys; 2015 Jun; 117(23):233905. PubMed ID: 26130846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaches for modeling magnetic nanoparticle dynamics.
    Reeves DB; Weaver JB
    Crit Rev Biomed Eng; 2014; 42(1):85-93. PubMed ID: 25271360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotational properties of ferromagnetic nanoparticles driven by a precessing magnetic field in a viscous fluid.
    Lyutyy TV; Denisov SI; Reva VV; Bystrik YS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042312. PubMed ID: 26565245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable and water-tolerant ionic liquid ferrofluids.
    Jain N; Zhang X; Hawkett BS; Warr GG
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):662-7. PubMed ID: 21338083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of Dynamic Behaviour in Magnetic Nanoparticles.
    Rietberg MT; Waanders S; Horstman-van de Loosdrecht MM; Wildeboer RR; Ten Haken B; Alic L
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of polydisperse inverse ferrofluids: theory and computer simulation.
    Jian YC; Gao Y; Huang JP; Tao R
    J Phys Chem B; 2008 Jan; 112(3):715-21. PubMed ID: 18095666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of the magnetization dynamics of diluted ferrofluids in medical applications.
    Rogge H; Erbe M; Buzug TM; Lüdtke-Buzug K
    Biomed Tech (Berl); 2013 Dec; 58(6):601-9. PubMed ID: 24163220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion-jump model for the combined Brownian and Néel relaxation dynamics of ferrofluids in the presence of external fields and flow.
    Ilg P
    Phys Rev E; 2019 Aug; 100(2-1):022608. PubMed ID: 31574757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous estimation of magnetic moment and Brownian relaxation time distributions of magnetic nanoparticles based on magnetic particle spectroscopy for biosensing application.
    Sun Y; Du Z; Zhang H; Wang H; Sasayama T; Yoshida T
    Nanoscale; 2023 Oct; 15(39):16089-16102. PubMed ID: 37751148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.