These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23387774)

  • 1. Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: a validation study.
    Cao R; Huang Z; Varghese T; Nabi G
    Med Phys; 2013 Feb; 40(2):022903. PubMed ID: 23387774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stiffness of prostate gland measured by transrectal real-time shear wave elastography for detection of prostate cancer: a feasibility study.
    Ji Y; Ruan L; Ren W; Dun G; Liu J; Zhang Y; Wan Q
    Br J Radiol; 2019 May; 92(1097):20180970. PubMed ID: 30875242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards clinical prostate ultrasound elastography using full inversion approach.
    Mousavi SR; Sadeghi-Naini A; Czarnota GJ; Samani A
    Med Phys; 2014 Mar; 41(3):033501. PubMed ID: 24593743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA-cryogel phantom with optimal acoustic and mechanical properties.
    Cournane S; Cannon L; Browne JE; Fagan AJ
    Phys Med Biol; 2010 Oct; 55(19):5965-83. PubMed ID: 20858913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: implications for targeted biopsies and active surveillance protocols.
    Boehm K; Salomon G; Beyer B; Schiffmann J; Simonis K; Graefen M; Budaeus L
    J Urol; 2015 Mar; 193(3):794-800. PubMed ID: 25264337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the Effect of Tissue Compression on the Results of Shear Wave Elastography Measurements.
    Vachutka J; Sedlackova Z; Furst T; Herman M; Herman J; Salzman R; Dolezal L
    Ultrason Imaging; 2018 Nov; 40(6):380-393. PubMed ID: 30101677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing stiffness of human prostates using acoustic radiation force.
    Zhai L; Madden J; Foo WC; Mouraviev V; Polascik TJ; Palmeri ML; Nightingale KR
    Ultrason Imaging; 2010 Oct; 32(4):201-13. PubMed ID: 21213566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technical Note: In vivo Young's modulus mapping of pancreatic ductal adenocarcinoma during HIFU ablation using harmonic motion elastography (HME).
    Nabavizadeh A; Payen T; Saharkhiz N; McGarry M; Olive KP; Konofagou EE
    Med Phys; 2018 Nov; 45(11):5244-5250. PubMed ID: 30178474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arterial Stiffness Estimation by Shear Wave Elastography: Validation in Phantoms with Mechanical Testing.
    Maksuti E; Widman E; Larsson D; Urban MW; Larsson M; Bjällmark A
    Ultrasound Med Biol; 2016 Jan; 42(1):308-21. PubMed ID: 26454623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copolymer-in-oil phantom materials for elastography.
    Oudry J; Bastard C; Miette V; Willinger R; Sandrin L
    Ultrasound Med Biol; 2009 Jul; 35(7):1185-97. PubMed ID: 19427100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel 3D printed mechanical actuator using centrifugal force for magnetic resonance elastography: Initial results in an anthropomorphic prostate phantom.
    Neumann W; Bichert A; Fleischhauer J; Stern A; Figuli R; Wilhelm M; Schad LR; Zöllner FG
    PLoS One; 2018; 13(10):e0205442. PubMed ID: 30296308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative breast elastography from B-mode images.
    Rabin C; Benech N
    Med Phys; 2019 Jul; 46(7):3001-3012. PubMed ID: 30972759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Resolution Elastography for Thin-Layer Mechanical Characterization: Toward Skin Investigation.
    Chartier C; Mofid Y; Bastard C; Miette V; Maruani A; Machet L; Ossant F
    Ultrasound Med Biol; 2017 Mar; 43(3):670-681. PubMed ID: 28043724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Scholte wave approach for ultrasonic surface acoustic wave elastography.
    Liu J; Leer J; Aglayomov SR; Emelianov SY
    Med Phys; 2023 Jul; 50(7):4138-4150. PubMed ID: 36971512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicone breast phantoms for elastographic imaging evaluation.
    Kashif AS; Lotz TF; McGarry MD; Pattison AJ; Chase JG
    Med Phys; 2013 Jun; 40(6):063503. PubMed ID: 23718614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel shape-similarity-based elastography technique for prostate cancer assessment.
    Mousavi SR; Wang H; Hesabgar SM; Scholl TJ; Samani A
    Med Phys; 2015 Sep; 42(9):5110-9. PubMed ID: 26328962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.