BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 23387820)

  • 1. An integrated approach to characterize transcription factor and microRNA regulatory networks involved in Schwann cell response to peripheral nerve injury.
    Chang LW; Viader A; Varghese N; Payton JE; Milbrandt J; Nagarajan R
    BMC Genomics; 2013 Feb; 14():84. PubMed ID: 23387820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury.
    Hung HA; Sun G; Keles S; Svaren J
    J Biol Chem; 2015 Mar; 290(11):6937-50. PubMed ID: 25614629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miR-485-5p suppresses Schwann cell proliferation and myelination by targeting cdc42 and Rac1.
    Zhang Z; Li X; Li A; Wu G
    Exp Cell Res; 2020 Mar; 388(1):111803. PubMed ID: 31877301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration.
    Brügger V; Duman M; Bochud M; Münger E; Heller M; Ruff S; Jacob C
    Nat Commun; 2017 Jan; 8():14272. PubMed ID: 28139683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mTORC1 Is Transiently Reactivated in Injured Nerves to Promote c-Jun Elevation and Schwann Cell Dedifferentiation.
    Norrmén C; Figlia G; Pfistner P; Pereira JA; Bachofner S; Suter U
    J Neurosci; 2018 May; 38(20):4811-4828. PubMed ID: 29695414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNAs 93-5p, 106b-5p, 17-5p, and 140-5p target the expression of early growth response protein 2 in Schwann cells.
    Sohn EJ; Nam YK; Park HT
    Neuroreport; 2019 Feb; 30(3):241-246. PubMed ID: 30614908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury.
    Ma KH; Hung HA; Svaren J
    J Neurosci; 2016 Aug; 36(35):9135-47. PubMed ID: 27581455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury.
    Yi S; Yuan Y; Chen Q; Wang X; Gong L; Liu J; Gu X; Li S
    Sci Rep; 2016 Jul; 6():29121. PubMed ID: 27381812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury.
    Arthur-Farraj PJ; Morgan CC; Adamowicz M; Gomez-Sanchez JA; Fazal SV; Beucher A; Razzaghi B; Mirsky R; Jessen KR; Aitman TJ
    Cell Rep; 2017 Sep; 20(11):2719-2734. PubMed ID: 28903050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Schwann cell-enriched circular RNA circ-Ankib1 regulates Schwann cell proliferation following peripheral nerve injury.
    Mao S; Zhang S; Zhou S; Huang T; Feng W; Gu X; Yu B
    FASEB J; 2019 Nov; 33(11):12409-12424. PubMed ID: 31415184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of microRNA-21 promoting Schwann cell proliferation and axon regeneration during injured nerve repair.
    Ning XJ; Lu XH; Luo JC; Chen C; Gao Q; Li ZY; Wang H
    RNA Biol; 2020 Oct; 17(10):1508-1519. PubMed ID: 32507001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the miR-363-5p/P2RX4 Axis in Regulating Schwann Cell Phenotype after Nerve Injury.
    Sohn EJ; Nam YK; Park HT
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. JUN Regulation of Injury-Induced Enhancers in Schwann Cells.
    Ramesh R; Manurung Y; Ma KH; Blakely T; Won S; Moreno-Ramos OA; Wyatt E; Awatramani R; Svaren J
    J Neurosci; 2022 Aug; 42(34):6506-6517. PubMed ID: 35906072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Egr2-dependent microRNA-138 is dispensable for peripheral nerve myelination.
    Lin HP; Oksuz I; Svaren J; Awatramani R
    Sci Rep; 2018 Feb; 8(1):3817. PubMed ID: 29491350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial action of miRNAs regulates transcriptional and post-transcriptional gene silencing following in vivo PNS injury.
    Adilakshmi T; Sudol I; Tapinos N
    PLoS One; 2012; 7(7):e39674. PubMed ID: 22792185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA and transcriptional crosstalk in myelinating glia.
    Svaren J
    Neurochem Int; 2014 Nov; 77():50-7. PubMed ID: 24979526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic identification of transcriptional and post-transcriptional regulations in human respiratory epithelial cells during influenza A virus infection.
    Liu ZP; Wu H; Zhu J; Miao H
    BMC Bioinformatics; 2014 Oct; 15(1):336. PubMed ID: 25281301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Transcription Factor TFCP2L1 is Associated with Myelination via miR708-5p Regulation in the Peripheral Nerve System.
    Sohn EJ; Nam YK
    Neurochem Res; 2022 Feb; 47(2):434-445. PubMed ID: 34581937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory networks in retinal ischemia-reperfusion injury.
    Andreeva K; Soliman MM; Cooper NG
    BMC Genet; 2015 Apr; 16():43. PubMed ID: 25902940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.