BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 23387933)

  • 1. Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques.
    Zeiser J; Gerhard R; Just I; Pich A
    J Proteome Res; 2013 Apr; 12(4):1604-18. PubMed ID: 23387933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haemorrhagic toxin and lethal toxin from Clostridium sordellii strain vpi9048: molecular characterization and comparative analysis of substrate specificity of the large clostridial glucosylating toxins.
    Genth H; Pauillac S; Schelle I; Bouvet P; Bouchier C; Varela-Chavez C; Just I; Popoff MR
    Cell Microbiol; 2014 Nov; 16(11):1706-21. PubMed ID: 24905543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved cellular effects induced by TcdA from Clostridium difficile.
    Jochim N; Gerhard R; Just I; Pich A
    Rapid Commun Mass Spectrom; 2014 May; 28(10):1089-100. PubMed ID: 24711272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clostridium difficile toxins: more than mere inhibitors of Rho proteins.
    Genth H; Dreger SC; Huelsenbeck J; Just I
    Int J Biochem Cell Biol; 2008; 40(4):592-7. PubMed ID: 18289919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Clostridium difficile Toxin A on the proteome of colonocytes studied by differential 2D electrophoresis.
    Zeiser JJ; Klodmann J; Braun HP; Gerhard R; Just I; Pich A
    J Proteomics; 2011 Dec; 75(2):469-79. PubMed ID: 21890007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serine-71 phosphorylation of Rac1/Cdc42 diminishes the pathogenic effect of Clostridium difficile toxin A.
    Schoentaube J; Olling A; Tatge H; Just I; Gerhard R
    Cell Microbiol; 2009 Dec; 11(12):1816-26. PubMed ID: 19709124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of small GTPase glucosylation by clostridial glucosylating toxins using multiplexed MRM analysis.
    Junemann J; Lämmerhirt CM; Polten F; Just I; Gerhard R; Genth H; Pich A
    Proteomics; 2017 May; 17(9):. PubMed ID: 28252257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difference in Mono-O-Glucosylation of Ras Subtype GTPases Between Toxin A and Toxin B From
    Genth H; Junemann J; Lämmerhirt CM; Lücke AC; Schelle I; Just I; Gerhard R; Pich A
    Front Microbiol; 2018; 9():3078. PubMed ID: 30622517
    [No Abstract]   [Full Text] [Related]  

  • 9. Development of a non-radiolabeled glucosyltransferase activity assay for C. difficile toxin A and B using ultra performance liquid chromatography.
    Loughney JW; Lancaster C; Price CE; Hoang VM; Ha S; Rustandi RR
    J Chromatogr A; 2017 May; 1498():169-175. PubMed ID: 28238427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Difference in the cytotoxic effects of toxin B from Clostridium difficile strain VPI 10463 and toxin B from variant Clostridium difficile strain 1470.
    Huelsenbeck J; Dreger S; Gerhard R; Barth H; Just I; Genth H
    Infect Immun; 2007 Feb; 75(2):801-9. PubMed ID: 17145947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular methods to study transcriptional regulation of Clostridium difficile toxin genes.
    Antunes A; Dupuy B
    Methods Mol Biol; 2010; 646():93-115. PubMed ID: 20597005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of Clostridium difficile toxin A glucosyltransferase domain bound to Mn2+ and UDP provides insights into glucosyltransferase activity and product release.
    D'Urzo N; Malito E; Biancucci M; Bottomley MJ; Maione D; Scarselli M; Martinelli M
    FEBS J; 2012 Sep; 279(17):3085-97. PubMed ID: 22747490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clostridium difficile and Clostridium sordellii toxins, proinflammatory versus anti-inflammatory response.
    Popoff MR
    Toxicon; 2018 Jul; 149():54-64. PubMed ID: 29146177
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Schweitzer T; Genth H; Pich A
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077344
    [No Abstract]   [Full Text] [Related]  

  • 15. Structure of the glucosyltransferase domain of TcdA in complex with RhoA provides insights into substrate recognition.
    Chen B; Liu Z; Perry K; Jin R
    Sci Rep; 2022 May; 12(1):9028. PubMed ID: 35637242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference in F-actin depolymerization induced by toxin B from the Clostridium difficile strain VPI 10463 and toxin B from the variant Clostridium difficile serotype F strain 1470.
    May M; Wang T; Müller M; Genth H
    Toxins (Basel); 2013 Jan; 5(1):106-19. PubMed ID: 23344455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins.
    Chen S; Sun C; Wang H; Wang J
    Toxins (Basel); 2015 Dec; 7(12):5254-67. PubMed ID: 26633511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing of Clostridium difficile toxins.
    Giesemann T; Egerer M; Jank T; Aktories K
    J Med Microbiol; 2008 Jun; 57(Pt 6):690-696. PubMed ID: 18480324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucosylation of Rho GTPases by Clostridium difficile toxin A triggers apoptosis in intestinal epithelial cells.
    Gerhard R; Nottrott S; Schoentaube J; Tatge H; Olling A; Just I
    J Med Microbiol; 2008 Jun; 57(Pt 6):765-770. PubMed ID: 18480335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High temporal resolution of glucosyltransferase dependent and independent effects of Clostridium difficile toxins across multiple cell types.
    D'Auria KM; Bloom MJ; Reyes Y; Gray MC; van Opstal EJ; Papin JA; Hewlett EL
    BMC Microbiol; 2015 Feb; 15(1):7. PubMed ID: 25648517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.