These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 23387966)

  • 21. α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries.
    Ji L; Toprakci O; Alcoutlabi M; Yao Y; Li Y; Zhang S; Guo B; Lin Z; Zhang X
    ACS Appl Mater Interfaces; 2012 May; 4(5):2672-9. PubMed ID: 22524417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium-sulfur batteries.
    Xu GL; Xu YF; Fang JC; Peng XX; Fu F; Huang L; Li JT; Sun SG
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10782-93. PubMed ID: 24090340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries.
    Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y
    Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon-coated Fe-Mn-O composites as promising anode materials for lithium-ion batteries.
    Li T; Wang YY; Tang R; Qi YX; Lun N; Bai YJ; Fan RH
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9470-7. PubMed ID: 24007324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries.
    Chen JJ; Zhang Q; Shi YN; Qin LL; Cao Y; Zheng MS; Dong QF
    Phys Chem Chem Phys; 2012 Apr; 14(16):5376-82. PubMed ID: 22382743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance.
    Xiao Y; Cao M; Ren L; Hu C
    Nanoscale; 2012 Dec; 4(23):7469-74. PubMed ID: 23093095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fe3O4 nanosphere@microporous organic networks: enhanced anode performances in lithium ion batteries through carbonization.
    Lim B; Jin J; Yoo J; Han SY; Kim K; Kang S; Park N; Lee SM; Kim HJ; Son SU
    Chem Commun (Camb); 2014 Jul; 50(57):7723-6. PubMed ID: 24902002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries.
    Park SK; Yu SH; Woo S; Quan B; Lee DC; Kim MK; Sung YE; Piao Y
    Dalton Trans; 2013 Feb; 42(7):2399-405. PubMed ID: 23208383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single electrospun porous NiO-ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries.
    Qiao L; Wang X; Qiao L; Sun X; Li X; Zheng Y; He D
    Nanoscale; 2013 Apr; 5(7):3037-42. PubMed ID: 23462740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid.
    Wu XL; Chen LL; Xin S; Yin YX; Guo YG; Kong QS; Xia YZ
    ChemSusChem; 2010 Jun; 3(6):703-7. PubMed ID: 20480495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries.
    Xu JS; Zhu YJ
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4752-7. PubMed ID: 22934532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MoO2@carbon hollow microspheres with tunable interiors and improved lithium-ion battery anode properties.
    Liu X; Ji W; Liang J; Peng L; Hou W
    Phys Chem Chem Phys; 2014 Oct; 16(38):20570-7. PubMed ID: 25156413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fe3O4/Fe/carbon composite and its application as anode material for lithium-ion batteries.
    Zhao X; Xia D; Zheng K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1350-6. PubMed ID: 22301516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile and rapid synthesis of highly porous wirelike TiO2 as anodes for lithium-ion batteries.
    Wang HE; Lu ZG; Xi LJ; Ma RG; Wang CD; Zapien JA; Bello I
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1608-13. PubMed ID: 22360340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fe2O3 xerogel used as the anode material for lithium ion batteries with excellent electrochemical performance.
    Xin J; Jia-jia C; Jian-hui X; Yi-ning S; You-zuo F; Min-sen Z; Quan-feng D
    Chem Commun (Camb); 2012 Jul; 48(59):7410-2. PubMed ID: 22713815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ethylene glycol-mediated rapid synthesis of carbon-coated ZnFe
    Gao G; Shi L; Lu S; Gao T; Li Z; Gao Y; Ding S
    Dalton Trans; 2018 Mar; 47(10):3521-3529. PubMed ID: 29431789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries.
    Chang K; Chen W
    Chem Commun (Camb); 2011 Apr; 47(14):4252-4. PubMed ID: 21380470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries.
    Choi BG; Chang SJ; Lee YB; Bae JS; Kim HJ; Huh YS
    Nanoscale; 2012 Sep; 4(19):5924-30. PubMed ID: 22899185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mn0.5Co0.5Fe2O4 nanoparticles highly dispersed in porous carbon microspheres as high performance anode materials in Li-ion batteries.
    Zhang Z; Ren W; Wang Y; Yang J; Tan Q; Zhong Z; Su F
    Nanoscale; 2014 Jun; 6(12):6805-11. PubMed ID: 24827728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors.
    Tang Q; Bairi P; Shrestha RG; Hill JP; Ariga K; Zeng H; Ji Q; Shrestha LK
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44458-44465. PubMed ID: 29210263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.