These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23387966)

  • 41. Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries.
    Ding B; Yuan C; Shen L; Xu G; Nie P; Zhang X
    Chemistry; 2013 Jan; 19(3):1013-9. PubMed ID: 23180622
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of porous carbon/TiO₂ composites through polymerization-induced phase separation and use as an anode for Na-ion batteries.
    Lee J; Chen YM; Zhu Y; Vogt BD
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21011-8. PubMed ID: 25397899
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.
    Wang M; Li G; Xu H; Qian Y; Yang J
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1003-8. PubMed ID: 23331462
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hollow 0.3Li2MnO3·0.7LiNi(0.5)Mn(0.5)O2 microspheres as a high-performance cathode material for lithium-ion batteries.
    Jiang Y; Yang Z; Luo W; Hu X; Huang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2954-60. PubMed ID: 23340597
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties.
    Li C; Yin X; Chen L; Li Q; Wang T
    Chemistry; 2010 May; 16(17):5215-21. PubMed ID: 20235237
    [TBL] [Abstract][Full Text] [Related]  

  • 46. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries.
    Chang K; Chen W
    ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of Mn₂O₃ nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance.
    Zhang X; Qian Y; Zhu Y; Tang K
    Nanoscale; 2014; 6(3):1725-31. PubMed ID: 24343374
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High electrochemical performance based on ultrathin porous CuO nanobelts grown on Cu substrate as integrated electrode.
    Zhang X; Yu L; Wang L; Ji R; Wang G; Geng B
    Phys Chem Chem Phys; 2013 Jan; 15(2):521-5. PubMed ID: 23171962
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries.
    Zhan F; Geng B; Guo Y
    Chemistry; 2009 Jun; 15(25):6169-74. PubMed ID: 19437475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries.
    Yang D; Zhu J; Rui X; Tan H; Cai R; Hoster HE; Yu DY; Hng HH; Yan Q
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1093-9. PubMed ID: 23312023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. One-pot synthesis of tin-embedded carbon/silica nanocomposites for anode materials in lithium-ion batteries.
    Hwang J; Woo SH; Shim J; Jo C; Lee KT; Lee J
    ACS Nano; 2013 Feb; 7(2):1036-44. PubMed ID: 23316943
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries.
    Pan A; Wu HB; Yu L; Zhu T; Lou XW
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3874-9. PubMed ID: 22809125
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes.
    Jin YH; Seo SD; Shim HW; Park KS; Kim DW
    Nanotechnology; 2012 Mar; 23(12):125402. PubMed ID: 22414887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.
    Jia X; Chen Z; Cui X; Peng Y; Wang X; Wang G; Wei F; Lu Y
    ACS Nano; 2012 Nov; 6(11):9911-9. PubMed ID: 23046380
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries.
    Li B; Cao H; Shao J; Li G; Qu M; Yin G
    Inorg Chem; 2011 Mar; 50(5):1628-32. PubMed ID: 21244033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Layer-by-layer assembled MoO₂-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries.
    Xia F; Hu X; Sun Y; Luo W; Huang Y
    Nanoscale; 2012 Aug; 4(15):4707-11. PubMed ID: 22744734
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries.
    Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrospun hemoglobin microbelts based biosensor for sensitive detection of hydrogen peroxide and nitrite.
    Ding Y; Wang Y; Li B; Lei Y
    Biosens Bioelectron; 2010 May; 25(9):2009-15. PubMed ID: 20167467
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile solvothermal synthesis of mesoporous Cu₂SnS₃ spheres and their application in lithium-ion batteries.
    Qu B; Zhang M; Lei D; Zeng Y; Chen Y; Chen L; Li Q; Wang Y; Wang T
    Nanoscale; 2011 Sep; 3(9):3646-51. PubMed ID: 21792405
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In-situ formation of sandwiched structures of nanotube/CuxOy/Cu composites for lithium battery applications.
    Venkatachalam S; Zhu H; Masarapu C; Hung K; Liu Z; Suenaga K; Wei B
    ACS Nano; 2009 Aug; 3(8):2177-84. PubMed ID: 19637892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.