BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23387996)

  • 1. Incorporating measured valve properties into a numerical model of a lymphatic vessel.
    Bertram CD; Macaskill C; Moore JE
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1519-34. PubMed ID: 23387996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a model of a multi-lymphangion lymphatic vessel incorporating realistic and measured parameter values.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Biomech Model Mechanobiol; 2014 Apr; 13(2):401-16. PubMed ID: 23801424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure.
    Bertram CD; Macaskill C; Moore JE
    J Biomech Eng; 2011 Jan; 133(1):011008. PubMed ID: 21186898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
    Jamalian S; Bertram CD; Richardson WJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2013 Dec; 305(12):H1709-17. PubMed ID: 24124185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling secondary lymphatic valves with a flexible vessel wall: how geometry and material properties combine to provide function.
    Bertram CD
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2081-2098. PubMed ID: 32303880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics.
    Contarino C; Toro EF
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1687-1714. PubMed ID: 30006745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2016 Apr; 310(7):H847-60. PubMed ID: 26747501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations.
    Li H; Mei Y; Maimon N; Padera TP; Baish JW; Munn LL
    Sci Rep; 2019 Jul; 9(1):10649. PubMed ID: 31337769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pump efficacy in a two-dimensional, fluid-structure interaction model of a chain of contracting lymphangions.
    Elich H; Barrett A; Shankar V; Fogelson AL
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1941-1968. PubMed ID: 34275062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valve-related modes of pump failure in collecting lymphatics: numerical and experimental investigation.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1987-2003. PubMed ID: 28699120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Lymphatic Vascular System: Does Nonuniform Lymphangion Length Limit Flow-Rate?
    Bertram CD
    J Biomech Eng; 2024 Sep; 146(9):. PubMed ID: 38558115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of valve gating in collecting lymphatic vessels from rat mesentery.
    Davis MJ; Rahbar E; Gashev AA; Zawieja DC; Moore JE
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H48-60. PubMed ID: 21460194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal postnodal lymphatic network structure that maximizes active propulsion of lymph.
    Venugopal AM; Quick CM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2009 Feb; 296(2):H303-9. PubMed ID: 19028799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.
    Quick CM; Venugopal AM; Dongaonkar RM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2144-9. PubMed ID: 18326809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the effect of morphology on lymphatic valve dynamic function.
    Ballard M; Wolf KT; Nepiyushchikh Z; Dixon JB; Alexeev A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1343-1356. PubMed ID: 29804152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lymphangion coordination minimally affects mean flow in lymphatic vessels.
    Venugopal AM; Stewart RH; Laine GA; Dongaonkar RM; Quick CM
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1183-9. PubMed ID: 17468331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network Scale Modeling of Lymph Transport and Its Effective Pumping Parameters.
    Jamalian S; Davis MJ; Zawieja DC; Moore JE
    PLoS One; 2016; 11(2):e0148384. PubMed ID: 26845031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully coupled fluid-structure interaction model of the secondary lymphatic valve.
    Wilson JT; Edgar LT; Prabhakar S; Horner M; van Loon R; Moore JE
    Comput Methods Biomech Biomed Engin; 2018 Dec; 21(16):813-823. PubMed ID: 30398077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational model of a network of initial lymphatics and pre-collectors with permeable interstitium.
    Ikhimwin BO; Bertram CD; Jamalian S; Macaskill C
    Biomech Model Mechanobiol; 2020 Apr; 19(2):661-676. PubMed ID: 31696326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive pressure-diameter relationship and structural composition of rat mesenteric lymphangions.
    Rahbar E; Weimer J; Gibbs H; Yeh AT; Bertram CD; Davis MJ; Hill MA; Zawieja DC; Moore JE
    Lymphat Res Biol; 2012 Dec; 10(4):152-63. PubMed ID: 23145980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.