BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23388692)

  • 21. Chemotherapy control by breath profile with application of SPME-GC/MS method.
    Ulanowska A; Trawińska E; Sawrycki P; Buszewski B
    J Sep Sci; 2012 Nov; 35(21):2908-13. PubMed ID: 23001965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupling needle trap devices with gas chromatography-ion mobility spectrometry detection as a simple approach for on-site quantitative analysis.
    Reyes-Garcés N; Gómez-Ríos GA; Souza Silva EA; Pawliszyn J
    J Chromatogr A; 2013 Jul; 1300():193-8. PubMed ID: 23768538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blood and breath levels of selected volatile organic compounds in healthy volunteers.
    Mochalski P; King J; Klieber M; Unterkofler K; Hinterhuber H; Baumann M; Amann A
    Analyst; 2013 Apr; 138(7):2134-45. PubMed ID: 23435188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Needle-type extraction device for the purge and trap analysis of 23 volatile organic compounds in tap water.
    Ueta I; Razak NA; Mizuguchi A; Kawakubo S; Saito Y; Jinno K
    J Chromatogr A; 2013 Nov; 1317():211-6. PubMed ID: 23876767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anodic alumina coating for extraction of volatile organic compounds in human exhaled breath vapor.
    Zhang G; Zou L; Xu H
    Talanta; 2015 Jan; 132():528-34. PubMed ID: 25476340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extraction media used in needle trap devices-Progress in development and application.
    Kędziora K; Wasiak W
    J Chromatogr A; 2017 Jul; 1505():1-17. PubMed ID: 28533027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and evaluation of needle trap device geometry and packing methods for automated and manual analysis.
    Warren JM; Pawliszyn J
    J Chromatogr A; 2011 Dec; 1218(50):8982-8. PubMed ID: 22055523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of the extraction conditions of the volatile compounds from chili peppers by headspace solid phase micro-extraction.
    Junior SB; de Marchi Tavares de Melo A; Zini CA; Godoy HT
    J Chromatogr A; 2011 May; 1218(21):3345-50. PubMed ID: 21227437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Determination of low concentration VOCs in air by a newly designed needle trap device].
    Li X; Chen JM
    Huan Jing Ke Xue; 2011 Dec; 32(12):3613-6. PubMed ID: 22468527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence of variations of endogenous halogenated volatile organic compounds in alveolar breath after mental exercise-induced oxidative stress.
    Sarbach C; Dugas B; Postaire E
    Ann Pharm Fr; 2020 Jan; 78(1):34-41. PubMed ID: 31796267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines--a comparative study.
    Mendes B; Gonçalves J; Câmara JS
    Talanta; 2012 Jan; 88():79-94. PubMed ID: 22265473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry.
    Buszewski B; Ulanowska A; Ligor T; Denderz N; Amann A
    Biomed Chromatogr; 2009 May; 23(5):551-6. PubMed ID: 19039804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sampling free and particle-bound chemicals using solid-phase microextraction and needle trap device simultaneously.
    Niri VH; Eom IY; Kermani FR; Pawliszyn J
    J Sep Sci; 2009 Apr; 32(7):1075-80. PubMed ID: 19266554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of sampling bags for the analysis of volatile organic compounds in breath.
    Ghimenti S; Lomonaco T; Bellagambi FG; Tabucchi S; Onor M; Trivella MG; Ceccarini A; Fuoco R; Di Francesco F
    J Breath Res; 2015 Dec; 9(4):047110. PubMed ID: 26654981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved pre-concentration and detection methods for volatile sulphur breath constituents.
    Mochalski P; Wzorek B; Sliwka I; Amann A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Jul; 877(20-21):1856-66. PubMed ID: 19493705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Headspace needle-trap analysis of priority volatile organic compounds from aqueous samples: application to the analysis of natural and waste waters.
    Alonso M; Cerdan L; Godayol A; Anticó E; Sanchez JM
    J Chromatogr A; 2011 Nov; 1218(45):8131-9. PubMed ID: 21974895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion-trap detection of volatile organic compounds in alveolar breath.
    Phillips M; Greenberg J
    Clin Chem; 1992 Jan; 38(1):60-5. PubMed ID: 1733607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A device for sampling of human alveolar breath for the measurement of expired volatile organic compounds.
    Raymer JH; Thomas KW; Cooper SD; Whitaker DA; Pellizzari ED
    J Anal Toxicol; 1990; 14(6):337-44. PubMed ID: 2128356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags.
    Mochalski P; King J; Unterkofler K; Amann A
    Analyst; 2013 Mar; 138(5):1405-18. PubMed ID: 23323261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Air sampling unit for breath analyzers.
    Szabra D; Prokopiuk A; Mikołajczyk J; Ligor T; Buszewski B; Bielecki Z
    Rev Sci Instrum; 2017 Nov; 88(11):115006. PubMed ID: 29195373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.