These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 23388754)

  • 1. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs.
    Wang PH; Ferdous F; Miao H; Wang J; Leaird DE; Srinivasan K; Chen L; Aksyuk V; Weiner AM
    Opt Express; 2012 Dec; 20(28):29284-95. PubMed ID: 23388754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing coherence in microcavity frequency combs via optical pulse shaping.
    Ferdous F; Miao H; Wang PH; Leaird DE; Srinivasan K; Chen L; Aksyuk V; Weiner AM
    Opt Express; 2012 Sep; 20(19):21033-43. PubMed ID: 23037227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators.
    Fülöp A; Mazur M; Lorences-Riesgo A; Helgason ÓB; Wang PH; Xuan Y; Leaird DE; Qi M; Andrekson PA; Weiner AM; Torres-Company V
    Nat Commun; 2018 Apr; 9(1):1598. PubMed ID: 29686226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent terabit communications with microresonator Kerr frequency combs.
    Pfeifle J; Brasch V; Lauermann M; Yu Y; Wegner D; Herr T; Hartinger K; Schindler P; Li J; Hillerkuss D; Schmogrow R; Weimann C; Holzwarth R; Freude W; Leuthold J; Kippenberg TJ; Koos C
    Nat Photonics; 2014 May; 8(5):375-380. PubMed ID: 24860615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microresonator-based solitons for massively parallel coherent optical communications.
    Marin-Palomo P; Kemal JN; Karpov M; Kordts A; Pfeifle J; Pfeiffer MHP; Trocha P; Wolf S; Brasch V; Anderson MH; Rosenberger R; Vijayan K; Freude W; Kippenberg TJ; Koos C
    Nature; 2017 Jun; 546(7657):274-279. PubMed ID: 28593968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chip-based frequency combs with sub-100 GHz repetition rates.
    Johnson AR; Okawachi Y; Levy JS; Cardenas J; Saha K; Lipson M; Gaeta AL
    Opt Lett; 2012 Mar; 37(5):875-7. PubMed ID: 22378423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the phase noise of a microresonator soliton comb.
    Nishimoto K; Minoshima K; Yasui T; Kuse N
    Opt Express; 2020 Jun; 28(13):19295-19303. PubMed ID: 32672209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal evolution of a cosine-modulated stationary field and Kerr frequency comb generation in a microresonator.
    Hu X; Liu Y; Xu X; Feng Y; Zhang W; Wang W; Song J; Wang Y; Zhao W
    Appl Opt; 2015 Oct; 54(29):8751-7. PubMed ID: 26479815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical frequency comb generation from a monolithic microresonator.
    Del'Haye P; Schliesser A; Arcizet O; Wilken T; Holzwarth R; Kippenberg TJ
    Nature; 2007 Dec; 450(7173):1214-7. PubMed ID: 18097405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications.
    Pfeifle J; Coillet A; Henriet R; Saleh K; Schindler P; Weimann C; Freude W; Balakireva IV; Larger L; Koos C; Chembo YK
    Phys Rev Lett; 2015 Mar; 114(9):093902. PubMed ID: 25793816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-referenced photonic chip soliton Kerr frequency comb.
    Brasch V; Lucas E; Jost JD; Geiselmann M; Kippenberg TJ
    Light Sci Appl; 2017 Jan; 6(1):e16202. PubMed ID: 30167198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kerr microresonator dual-comb source with adjustable line-spacing.
    Qureshi PC; Ng V; Azeem F; Trainor LS; Schwefel HG; Coen S; Erkintalo M; Murdoch SG
    Opt Express; 2023 Oct; 31(22):36236-36244. PubMed ID: 38017778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins of clustered frequency combs in Kerr microresonators.
    Sayson NLB; Pham H; Webb KE; Ng V; Trainor LS; Schwefel HGL; Coen S; Erkintalo M; Murdoch SG
    Opt Lett; 2018 Sep; 43(17):4180-4183. PubMed ID: 30160746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators.
    Xue X; Xuan Y; Wang C; Wang PH; Liu Y; Niu B; Leaird DE; Qi M; Weiner AM
    Opt Express; 2016 Jan; 24(1):687-98. PubMed ID: 26832298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of a microresonator Kerr frequency comb on the pump linewidth.
    Liao P; Bao C; Kordts A; Karpov M; Pfeiffer MH; Zhang L; Mohajerin-Ariaei A; Cao Y; Almaiman A; Ziyadi M; Wilkinson SR; Tur M; Kippenberg TJ; Willner AE
    Opt Lett; 2017 Feb; 42(4):779-782. PubMed ID: 28198861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators.
    Wang CY; Herr T; Del'Haye P; Schliesser A; Hofer J; Holzwarth R; Hänsch TW; Picqué N; Kippenberg TJ
    Nat Commun; 2013; 4():1345. PubMed ID: 23299895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid-infrared ultra-broadband optical Kerr frequency comb based on a CdTe ring microresonator: a theoretical investigation.
    Lu S; Liu X; Shi Y; Yang H; Long Z; Li Y; Wu H; Liang H
    Opt Express; 2022 Sep; 30(19):33969-33979. PubMed ID: 36242420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system.
    Jiang S; Guo C; Fu H; Che K; Xu H; Cai Z
    Opt Express; 2020 Dec; 28(25):38304-38316. PubMed ID: 33379645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon-chip mid-infrared frequency comb generation.
    Griffith AG; Lau RK; Cardenas J; Okawachi Y; Mohanty A; Fain R; Lee YH; Yu M; Phare CT; Poitras CB; Gaeta AL; Lipson M
    Nat Commun; 2015 Feb; 6():6299. PubMed ID: 25708922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Octave spanning tunable frequency comb from a microresonator.
    Del'Haye P; Herr T; Gavartin E; Gorodetsky ML; Holzwarth R; Kippenberg TJ
    Phys Rev Lett; 2011 Aug; 107(6):063901. PubMed ID: 21902324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.