BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23388827)

  • 1. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts.
    Dai N; Christiansen J; Nielsen FC; Avruch J
    Genes Dev; 2013 Feb; 27(3):301-12. PubMed ID: 23388827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry.
    Dai N; Rapley J; Angel M; Yanik MF; Blower MD; Avruch J
    Genes Dev; 2011 Jun; 25(11):1159-72. PubMed ID: 21576258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IGF2 mRNA binding protein-2 is a tumor promoter that drives cancer proliferation through its client mRNAs IGF2 and HMGA1.
    Dai N; Ji F; Wright J; Minichiello L; Sadreyev R; Avruch J
    Elife; 2017 Jul; 6():. PubMed ID: 28753127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of mouse igf2 mRNA-binding protein 3 and its implications for the developing central nervous system.
    Mori H; Sakakibara S; Imai T; Nakamura Y; Iijima T; Suzuki A; Yuasa Y; Takeda M; Okano H
    J Neurosci Res; 2001 Apr; 64(2):132-43. PubMed ID: 11288142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide.
    Oh WJ; Wu CC; Kim SJ; Facchinetti V; Julien LA; Finlan M; Roux PP; Su B; Jacinto E
    EMBO J; 2010 Dec; 29(23):3939-51. PubMed ID: 21045808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Fetal Genes by Transitions among RNA-Binding Proteins during Liver Development.
    Suzuki T; Adachi S; Kikuguchi C; Shibata S; Nishijima S; Kawamoto Y; Iizuka Y; Koseki H; Okano H; Natsume T; Yamamoto T
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33297405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.
    Dennis MD; Jefferson LS; Kimball SR
    J Biol Chem; 2012 Dec; 287(51):42890-9. PubMed ID: 23105104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unifying model for mTORC1-mediated regulation of mRNA translation.
    Thoreen CC; Chantranupong L; Keys HR; Wang T; Gray NS; Sabatini DM
    Nature; 2012 May; 485(7396):109-13. PubMed ID: 22552098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRD-BP/IMP1 expression characterizes cord blood CD34+ stem cells and affects c-myc and IGF-II expression in MCF-7 cancer cells.
    Ioannidis P; Mahaira LG; Perez SA; Gritzapis AD; Sotiropoulou PA; Kavalakis GJ; Antsaklis AI; Baxevanis CN; Papamichail M
    J Biol Chem; 2005 May; 280(20):20086-93. PubMed ID: 15769738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1).
    García-Martínez JM; Alessi DR
    Biochem J; 2008 Dec; 416(3):375-85. PubMed ID: 18925875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells.
    Liao B; Hu Y; Herrick DJ; Brewer G
    J Biol Chem; 2005 May; 280(18):18517-24. PubMed ID: 15753088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mTORC2 is required for proliferation and survival of TSC2-null cells.
    Goncharova EA; Goncharov DA; Li H; Pimtong W; Lu S; Khavin I; Krymskaya VP
    Mol Cell Biol; 2011 Jun; 31(12):2484-98. PubMed ID: 21482669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR).
    García-Martínez JM; Moran J; Clarke RG; Gray A; Cosulich SC; Chresta CM; Alessi DR
    Biochem J; 2009 Jun; 421(1):29-42. PubMed ID: 19402821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice.
    Hansen TV; Hammer NA; Nielsen J; Madsen M; Dalbaeck C; Wewer UM; Christiansen J; Nielsen FC
    Mol Cell Biol; 2004 May; 24(10):4448-64. PubMed ID: 15121863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells
    Zheng B; Wang J; Tang L; Tan C; Zhao Z; Xiao Y; Ge R; Zhu D
    Int J Biol Sci; 2017; 13(1):110-121. PubMed ID: 28123351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of the Hippo Pathway Component AMOTL2 by the mTORC2 Kinase Promotes YAP Signaling, Resulting in Enhanced Glioblastoma Growth and Invasiveness.
    Artinian N; Cloninger C; Holmes B; Benavides-Serrato A; Bashir T; Gera J
    J Biol Chem; 2015 Aug; 290(32):19387-401. PubMed ID: 25998128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reciprocal regulation of mTOR complexes in pancreatic islets from humans with type 2 diabetes.
    Yuan T; Rafizadeh S; Gorrepati KD; Lupse B; Oberholzer J; Maedler K; Ardestani A
    Diabetologia; 2017 Apr; 60(4):668-678. PubMed ID: 28004151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia Increases IGFBP-1 Phosphorylation Mediated by mTOR Inhibition.
    Damerill I; Biggar KK; Abu Shehab M; Li SS; Jansson T; Gupta MB
    Mol Endocrinol; 2016 Feb; 30(2):201-16. PubMed ID: 26714229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells.
    Le Bacquer O; Queniat G; Gmyr V; Kerr-Conte J; Lefebvre B; Pattou F
    J Endocrinol; 2013 Jan; 216(1):21-9. PubMed ID: 23092880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive phosphorylation of the mTORC2/Akt/4E-BP1 pathway in newly derived canine hemangiosarcoma cell lines.
    Murai A; Asa SA; Kodama A; Hirata A; Yanai T; Sakai H
    BMC Vet Res; 2012 Jul; 8():128. PubMed ID: 22839755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.