These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23388927)

  • 1. Energy-guided learning approach to compressive FD-OCT.
    Schwartz S; Liu C; Wong A; Clausi DA; Fieguth P; Bizheva K
    Opt Express; 2013 Jan; 21(1):329-44. PubMed ID: 23388927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images.
    Wu AB; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):470-8. PubMed ID: 22614516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid volumetric OCT image acquisition using compressive sampling.
    Lebed E; Mackenzie PJ; Sarunic MV; Beg MF
    Opt Express; 2010 Sep; 18(20):21003-12. PubMed ID: 20940995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.
    Li J; Bloch P; Xu J; Sarunic MV; Shannon L
    Appl Opt; 2011 May; 50(13):1832-8. PubMed ID: 21532660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery.
    Wong A; Mishra A; Bizheva K; Clausi DA
    Opt Express; 2010 Apr; 18(8):8338-52. PubMed ID: 20588679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homotopic, non-local sparse reconstruction of optical coherence tomography imagery.
    Liu C; Wong A; Bizheva K; Fieguth P; Bie H
    Opt Express; 2012 Apr; 20(9):10200-11. PubMed ID: 22535111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier Domain Optical Coherence Tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT.
    Stehouwer M; Verbraak FD; de Vries H; Kok PH; van Leeuwen TG
    Eye (Lond); 2010 Jun; 24(6):980-4. PubMed ID: 19911024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography.
    Zhang N; Huo T; Wang C; Chen T; Zheng JG; Xue P
    Opt Lett; 2012 Aug; 37(15):3075-7. PubMed ID: 22859090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral phase based k-domain interpolation for uniform sampling in swept-source optical coherence tomography.
    Wu T; Ding Z; Wang L; Chen M
    Opt Express; 2011 Sep; 19(19):18430-9. PubMed ID: 21935211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography.
    Liu X; Kang JU
    Opt Express; 2010 Oct; 18(21):22010-9. PubMed ID: 20941102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach.
    Yazdanpanah A; Hamarneh G; Smith BR; Sarunic MV
    IEEE Trans Med Imaging; 2011 Feb; 30(2):484-96. PubMed ID: 20952331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time dispersion-compensated image reconstruction for compressive sensing spectral domain optical coherence tomography.
    Xu D; Huang Y; Kang JU
    J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):2064-9. PubMed ID: 25401447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated layer segmentation of optical coherence tomography images.
    Lu S; Cheung CY; Liu J; Lim JH; Leung CK; Wong TY
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2605-8. PubMed ID: 20595078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography.
    Chan KK; Tang S
    Opt Express; 2011 Dec; 19(27):26891-904. PubMed ID: 22274272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Artifacts in optical coherence tomography (OCT) imaging of the retina].
    Strauss RW; Scholz F; Ulbig MW; Kampik A; Neubauer AS
    Klin Monbl Augenheilkd; 2007 Jan; 224(1):47-51. PubMed ID: 17260319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Order preserving and shape prior constrained intra-retinal layer segmentation in optical coherence tomography.
    Rathke F; Schmidt S; Schnörr C
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):370-7. PubMed ID: 22003721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints.
    Dufour PA; Ceklic L; Abdillahi H; Schröder S; De Dzanet S; Wolf-Schnurrbusch U; Kowal J
    IEEE Trans Med Imaging; 2013 Mar; 32(3):531-43. PubMed ID: 23086520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography.
    Sarunic MV; Yazdanpanah A; Gibson E; Xu J; Bai Y; Lee S; Saragovi HU; Beg MF
    Opt Express; 2010 Oct; 18(22):23435-41. PubMed ID: 21164686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.