These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23389263)

  • 1. Optical coupling from InGaAs subcell to InGaP subcell in InGaP/InGaAs/Ge multi-junction solar cells.
    Shu GW; Lin JY; Jian HT; Shen JL; Wang SC; Chou CL; Chou WC; Wu CH; Chiu CH; Kuo HC
    Opt Express; 2013 Jan; 21 Suppl 1():A123-30. PubMed ID: 23389263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced in and out-coupling of InGaAs slab waveguides by periodic metal slit arrays.
    Kim SH; Lee CM; Sim SB; Kim JH; Choi JH; Han WS; Ahn KJ; Yee KJ
    Opt Express; 2012 Mar; 20(6):6365-74. PubMed ID: 22418518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip.
    Gassenq A; Hattasan N; Cerutti L; Rodriguez JB; Tournié E; Roelkens G
    Opt Express; 2012 May; 20(11):11665-72. PubMed ID: 22714153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides.
    Sheng Z; Liu L; Brouckaert J; He S; Van Thourhout D
    Opt Express; 2010 Jan; 18(2):1756-61. PubMed ID: 20174003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells.
    Yang T; Wang X; Liu W; Shi Y; Yang F
    Opt Express; 2013 Jul; 21(15):18207-15. PubMed ID: 23938691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters.
    Yang MD; Liu YK; Shen JL; Wu CH; Lin CA; Chang WH; Wang HH; Yeh HI; Chan WH; Parak WJ
    Opt Express; 2008 Sep; 16(20):15754-8. PubMed ID: 18825214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Conversion Efficiency of III-V Triple-junction Solar Cells with Graphene Quantum Dots.
    Lin TN; Santiago SR; Zheng JA; Chao YC; Yuan CT; Shen JL; Wu CH; Lin CJ; Liu WR; Cheng MC; Chou WC
    Sci Rep; 2016 Dec; 6():39163. PubMed ID: 27982073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency enhancement in GaAs solar cells using self-assembled microspheres.
    Chang TH; Wu PH; Chen SH; Chan CH; Lee CC; Chen CC; Su YK
    Opt Express; 2009 Apr; 17(8):6519-24. PubMed ID: 19365476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved sinusoidal gating with balanced InGaAs/InP Single Photon Avalanche Diodes.
    Lu Z; Sun W; Zhou Q; Campbell J; Jiang X; Itzler MA
    Opt Express; 2013 Jul; 21(14):16716-21. PubMed ID: 23938523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.
    Pennanen AM; Toppari JJ
    Opt Express; 2013 Jan; 21 Suppl 1():A23-35. PubMed ID: 23389272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the evanescent wave coupling effect in a sub-wavelength-sized GaAs/AlGaAs ridge structure by low-refractive-index surface layers.
    Wang XL; Hao GD; Takahashi T
    Opt Express; 2014 Oct; 22 Suppl 6():A1559-66. PubMed ID: 25607313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical modeling and ultra-thin design for multi-junction solar cells with a light-trapping front surface and its application to InGaP/GaAs/InGaAs 3-junction.
    Zhu L; Wang Y; Pan X; Akiyama H
    Opt Express; 2022 Sep; 30(20):35202-35218. PubMed ID: 36258477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The theoretical investigation of all-optical polarization switching based on InGaAs(P) Bragg-spaced quantum wells.
    Wang T; Li G; Chen Z
    Opt Express; 2008 Jan; 16(1):127-32. PubMed ID: 18521140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot.
    Verma VB; Stevens MJ; Silverman KL; Dias NL; Garg A; Coleman JJ; Mirin RP
    Opt Express; 2011 Feb; 19(5):4182-7. PubMed ID: 21369247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge.
    Sablon KA; Little JW; Mitin V; Sergeev A; Vagidov N; Reinhardt K
    Nano Lett; 2011 Jun; 11(6):2311-7. PubMed ID: 21545165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial distribution clamping of discrete spatial solitons due to three photon absorption in AlGaAs waveguide arrays.
    Hudson DD; Kutz JN; Schibli TR; Christodoulides DN; Morandotti R; Cundiff ST
    Opt Express; 2012 Jan; 20(3):1939-44. PubMed ID: 22330434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-efficiency nanostructured window GaAs solar cells.
    Liang D; Kang Y; Huo Y; Chen Y; Cui Y; Harris JS
    Nano Lett; 2013 Oct; 13(10):4850-6. PubMed ID: 24021024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced performance of InGaN/GaN based solar cells with an In(0.05)Ga(0.95)N ultra-thin inserting layer between GaN barrier and In(0.2)Ga(0.8)N well.
    Ren Z; Chao L; Chen X; Zhao B; Wang X; Tong J; Zhang J; Zhuo X; Li D; Yi H; Li S
    Opt Express; 2013 Mar; 21(6):7118-24. PubMed ID: 23546093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers.
    Xie P; Lin H; Liu Y; Li B
    Opt Express; 2014 Oct; 22 Suppl 6():A1389-98. PubMed ID: 25607295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate.
    Lee YC; Chang CC; Chou YY
    Opt Express; 2013 Jan; 21 Suppl 1():A36-41. PubMed ID: 23389273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.