These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 23389308)
1. Self-association of the galectin-9 C-terminal domain via the opposite surface of the sugar-binding site. Nonaka Y; Ogawa T; Oomizu S; Nakakita S; Nishi N; Kamitori S; Hirashima M; Nakamura T J Biochem; 2013 May; 153(5):463-71. PubMed ID: 23389308 [TBL] [Abstract][Full Text] [Related]
2. X-ray structure of a protease-resistant mutant form of human galectin-8 with two carbohydrate recognition domains. Yoshida H; Yamashita S; Teraoka M; Itoh A; Nakakita S; Nishi N; Kamitori S FEBS J; 2012 Oct; 279(20):3937-51. PubMed ID: 22913484 [TBL] [Abstract][Full Text] [Related]
3. Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Patnaik SK; Potvin B; Carlsson S; Sturm D; Leffler H; Stanley P Glycobiology; 2006 Apr; 16(4):305-17. PubMed ID: 16319083 [TBL] [Abstract][Full Text] [Related]
4. Galectin-8 tandem-repeat structure is essential for T-cell proliferation but not for co-stimulation. Cattaneo V; Tribulatti MV; Campetella O Biochem J; 2011 Feb; 434(1):153-60. PubMed ID: 21091438 [TBL] [Abstract][Full Text] [Related]
5. Structural analysis of the human galectin-9 N-terminal carbohydrate recognition domain reveals unexpected properties that differ from the mouse orthologue. Nagae M; Nishi N; Nakamura-Tsuruta S; Hirabayashi J; Wakatsuki S; Kato R J Mol Biol; 2008 Jan; 375(1):119-35. PubMed ID: 18005988 [TBL] [Abstract][Full Text] [Related]
6. The N-terminal carbohydrate recognition domain of galectin-8 recognizes specific glycosphingolipids with high affinity. Ideo H; Seko A; Ishizuka I; Yamashita K Glycobiology; 2003 Oct; 13(10):713-23. PubMed ID: 12851289 [TBL] [Abstract][Full Text] [Related]
7. Characterization of galectin-9-induced death of Jurkat T cells. Lu LH; Nakagawa R; Kashio Y; Ito A; Shoji H; Nishi N; Hirashima M; Yamauchi A; Nakamura T J Biochem; 2007 Feb; 141(2):157-72. PubMed ID: 17167046 [TBL] [Abstract][Full Text] [Related]
8. Induction of cell adhesion by galectin-8 and its target molecules in Jurkat T-cells. Yamamoto H; Nishi N; Shoji H; Itoh A; Lu LH; Hirashima M; Nakamura T J Biochem; 2008 Mar; 143(3):311-24. PubMed ID: 18024965 [TBL] [Abstract][Full Text] [Related]
9. X-ray structure of a protease-resistant mutant form of human galectin-9 having two carbohydrate recognition domains with a metal-binding site. Yoshida H; Nishi N; Wada K; Nakamura T; Hirashima M; Kuwabara N; Kato R; Kamitori S Biochem Biophys Res Commun; 2017 Sep; 490(4):1287-1293. PubMed ID: 28687490 [TBL] [Abstract][Full Text] [Related]
10. The second glutamic acid in the C-terminal CRD affects the carbohydrate-binding properties of recombinant galectins of Haemonchus contortus. Wang J; Yan R; Xu L; Li X Vet Parasitol; 2007 Sep; 148(3-4):247-55. PubMed ID: 17643820 [TBL] [Abstract][Full Text] [Related]
11. Role of the carboxyl-terminal lectin domain in self-association of galectin-3. Yang RY; Hill PN; Hsu DK; Liu FT Biochemistry; 1998 Mar; 37(12):4086-92. PubMed ID: 9521730 [TBL] [Abstract][Full Text] [Related]
12. Design of a peptidic inhibitor that targets the dimer interface of a prototypic galectin. Vladoiu MC; Labrie M; Létourneau M; Egesborg P; Gagné D; Billard É; Grosset AA; Doucet N; Chatenet D; St-Pierre Y Oncotarget; 2015 Dec; 6(38):40970-80. PubMed ID: 26543238 [TBL] [Abstract][Full Text] [Related]
13. Modulation of the carbohydrate-binding specificity of two Xenopus proto-type galectins by site-directed mutagenesis. Nonaka Y; Ogawa T; Shoji H; Nishi N; Kamitori S; Nakamura T Biochim Biophys Acta Proteins Proteom; 2021 Oct; 1869(10):140684. PubMed ID: 34146732 [TBL] [Abstract][Full Text] [Related]
14. Role of the carbohydrate recognition domains of mouse galectin-4 in oligosaccharide binding and epitope recognition and expression of galectin-4 and galectin-6 in mouse cells and tissues. Marková V; Smetana K; Jeníková G; Láchová J; Krejciríková V; Poplstein M; Fábry M; Brynda J; Alvarez RA; Cummings RD; Maly P Int J Mol Med; 2006 Jul; 18(1):65-76. PubMed ID: 16786157 [TBL] [Abstract][Full Text] [Related]
15. Optimization of the inter-domain structure of galectin-9 for recombinant production. Itoh A; Fukata Y; Miyanaka H; Nonaka Y; Ogawa T; Nakamura T; Nishi N Glycobiology; 2013 Aug; 23(8):920-5. PubMed ID: 23507964 [TBL] [Abstract][Full Text] [Related]
16. Structural basis of a fungal galectin from Agrocybe cylindracea for recognizing sialoconjugate. Ban M; Yoon HJ; Demirkan E; Utsumi S; Mikami B; Yagi F J Mol Biol; 2005 Aug; 351(4):695-706. PubMed ID: 16051274 [TBL] [Abstract][Full Text] [Related]
17. NMR assignments of the C-terminal domain of human galectin-8. Liu CH; Chien CT; Lin CH; Hsu ST Biomol NMR Assign; 2015 Oct; 9(2):427-30. PubMed ID: 26126590 [TBL] [Abstract][Full Text] [Related]
18. Galectin multimerization and lattice formation are regulated by linker region structure. Earl LA; Bi S; Baum LG Glycobiology; 2011 Jan; 21(1):6-12. PubMed ID: 20864568 [TBL] [Abstract][Full Text] [Related]
19. Structure of full-length Toxascaris leonina galectin with two carbohydrate-recognition domains. Jeong MS; Hwang HG; Yu HS; Jang SB Acta Crystallogr D Biol Crystallogr; 2013 Feb; 69(Pt 2):168-75. PubMed ID: 23385453 [TBL] [Abstract][Full Text] [Related]
20. Structural analysis of the recognition mechanism of poly-N-acetyllactosamine by the human galectin-9 N-terminal carbohydrate recognition domain. Nagae M; Nishi N; Murata T; Usui T; Nakamura T; Wakatsuki S; Kato R Glycobiology; 2009 Feb; 19(2):112-7. PubMed ID: 18977853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]