These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 23389324)

  • 21. Quantitative measurement of ligand exchange on iron oxides via radiolabeled oleic acid.
    Davis K; Qi B; Witmer M; Kitchens CL; Powell BA; Mefford OT
    Langmuir; 2014 Sep; 30(36):10918-25. PubMed ID: 25137089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and magnetic characterization of self-assembled iron oxide nanoparticle arrays.
    Benitez MJ; Mishra D; Szary P; Badini Confalonieri GA; Feyen M; Lu AH; Agudo L; Eggeler G; Petracic O; Zabel H
    J Phys Condens Matter; 2011 Mar; 23(12):126003. PubMed ID: 21378441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cationic gel-phase liposomes with "decorated" anionic SPIO nanoparticles: morphology, colloidal, and bilayer properties.
    Chen Y; Bothun GD
    Langmuir; 2011 Jul; 27(14):8645-52. PubMed ID: 21649441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetite nanocrystal clusters with ultra-high sensitivity in magnetic resonance imaging.
    Xu F; Cheng C; Chen DX; Gu H
    Chemphyschem; 2012 Jan; 13(1):336-41. PubMed ID: 22095763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colloidal crystallization and structural changes in suspensions of silica/magnetite core-shell nanoparticles.
    Malik V; Petukhov AV; He L; Yin Y; Schmidt M
    Langmuir; 2012 Oct; 28(41):14777-83. PubMed ID: 22794064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging.
    Taboada E; Rodríguez E; Roig A; Oró J; Roch A; Muller RN
    Langmuir; 2007 Apr; 23(8):4583-8. PubMed ID: 17355158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of water-based ferrofluids as contrast agents for magnetic resonance imaging.
    Casula MF; Corrias A; Arosio P; Lascialfari A; Sen T; Floris P; Bruce IJ
    J Colloid Interface Sci; 2011 May; 357(1):50-5. PubMed ID: 21345440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and colloidal properties of polyether-magnetite complexes in water and phosphate-buffered saline.
    Miles WC; Goff JD; Huffstetler PP; Reinholz CM; Pothayee N; Caba BL; Boyd JS; Davis RM; Riffle JS
    Langmuir; 2009 Jan; 25(2):803-13. PubMed ID: 19105718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stress relaxation in a ferrofluid with clustered nanoparticles.
    Borin DY; Zubarev AY; Chirikov DN; Odenbach S
    J Phys Condens Matter; 2014 Oct; 26(40):406002. PubMed ID: 25229878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colloidal stability of magnetite/poly(lactic acid) core/shell nanoparticles.
    Gómez-Lopera SA; Arias JL; Gallardo V; Delgado AV
    Langmuir; 2006 Mar; 22(6):2816-21. PubMed ID: 16519488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP.
    Golas PL; Louie S; Lowry GV; Matyjaszewski K; Tilton RD
    Langmuir; 2010 Nov; 26(22):16890-900. PubMed ID: 20945936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring colloidal stability of polymer-coated magnetic nanoparticles using AC susceptibility measurements.
    Herrera AP; Barrera C; Zayas Y; Rinaldi C
    J Colloid Interface Sci; 2010 Feb; 342(2):540-9. PubMed ID: 19948339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and characterization of amino-functionalized magnetic nanogels via photopolymerization for MRI applications.
    Gong Y; Fan M; Gao F; Hong J; Liu S; Luo S; Yu J; Huang J
    Colloids Surf B Biointerfaces; 2009 Jul; 71(2):243-7. PubMed ID: 19278838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploiting Size-Dependent Drag and Magnetic Forces for Size-Specific Separation of Magnetic Nanoparticles.
    Rogers HB; Anani T; Choi YS; Beyers RJ; David AE
    Int J Mol Sci; 2015 Aug; 16(8):20001-19. PubMed ID: 26307980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties.
    Meledandri CJ; Stolarczyk JK; Ghosh S; Brougham DF
    Langmuir; 2008 Dec; 24(24):14159-65. PubMed ID: 19053647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aqueous stabilisation of carbon-encapsulated superparamagnetic α-iron nanoparticles for biomedical applications.
    Aguiló-Aguayo N; Maurizi L; Galmarini S; Ollivier-Beuzelin MG; Coullerez G; Bertran E; Hofmann H
    Dalton Trans; 2014 Sep; 43(36):13764-75. PubMed ID: 25104040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-dimensional nanoparticle clustering in polymer micelles and their transverse relaxivity rates.
    Hickey RJ; Meng X; Zhang P; Park SJ
    ACS Nano; 2013 Jul; 7(7):5824-33. PubMed ID: 23731021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of magnetic chromatography to sort polydisperse nanoparticles in ferrofluids.
    Forge D; Gossuin Y; Roch A; Laurent S; Elst LV; Muller RN
    Contrast Media Mol Imaging; 2010; 5(3):126-32. PubMed ID: 20586034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.