BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23389525)

  • 1. Climate adaptation: Survival of the flexible.
    Rosner H
    Nature; 2013 Feb; 494(7435):22-3. PubMed ID: 23389525
    [No Abstract]   [Full Text] [Related]  

  • 2. Climate heterogeneity modulates impact of warming on tropical insects.
    Bonebrake TC; Deutsch CA
    Ecology; 2012 Mar; 93(3):449-55. PubMed ID: 22624199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Acclimation Ability Varies in Temperate and Tropical Aquatic Insects from Different Elevations.
    Shah AA; Funk WC; Ghalambor CK
    Integr Comp Biol; 2017 Nov; 57(5):977-987. PubMed ID: 29087493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal performance across levels of biological organization.
    Rezende EL; Bozinovic F
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180549. PubMed ID: 31203764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation.
    Huey RB; Kearney MR; Krockenberger A; Holtum JA; Jess M; Williams SE
    Philos Trans R Soc Lond B Biol Sci; 2012 Jun; 367(1596):1665-79. PubMed ID: 22566674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard.
    Pontes-da-Silva E; Magnusson WE; Sinervo B; Caetano GH; Miles DB; Colli GR; Diele-Viegas LM; Fenker J; Santos JC; Werneck FP
    J Therm Biol; 2018 Apr; 73():50-60. PubMed ID: 29549991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why tropical forest lizards are vulnerable to climate warming.
    Huey RB; Deutsch CA; Tewksbury JJ; Vitt LJ; Hertz PE; Alvarez Pérez HJ; Garland T
    Proc Biol Sci; 2009 Jun; 276(1664):1939-48. PubMed ID: 19324762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erosion of lizard diversity by climate change and altered thermal niches.
    Sinervo B; Méndez-de-la-Cruz F; Miles DB; Heulin B; Bastiaans E; Villagrán-Santa Cruz M; Lara-Resendiz R; Martínez-Méndez N; Calderón-Espinosa ML; Meza-Lázaro RN; Gadsden H; Avila LJ; Morando M; De la Riva IJ; Victoriano Sepulveda P; Rocha CF; Ibargüengoytía N; Aguilar Puntriano C; Massot M; Lepetz V; Oksanen TA; Chapple DG; Bauer AM; Branch WR; Clobert J; Sites JW
    Science; 2010 May; 328(5980):894-9. PubMed ID: 20466932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.
    Kubisch EL; Fernández JB; Ibargüengoytía NR
    J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turn up the heat: thermal tolerances of lizards at La Selva, Costa Rica.
    Brusch GA; Taylor EN; Whitfield SM
    Oecologia; 2016 Feb; 180(2):325-34. PubMed ID: 26466592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast adaptation of tropical diatoms to increased warming with trade-offs.
    Jin P; Agustí S
    Sci Rep; 2018 Dec; 8(1):17771. PubMed ID: 30538260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moving forward with species distributions.
    Feeley KJ
    Am J Bot; 2015 Feb; 102(2):173-5. PubMed ID: 25667069
    [No Abstract]   [Full Text] [Related]  

  • 13. Temperature dependence of metabolic rate in tropical and temperate aquatic insects: Support for the Climate Variability Hypothesis in mayflies but not stoneflies.
    Shah AA; Woods HA; Havird JC; Encalada AC; Flecker AS; Funk WC; Guayasamin JM; Kondratieff BC; Poff NL; Thomas SA; Zamudio KR; Ghalambor CK
    Glob Chang Biol; 2021 Jan; 27(2):297-311. PubMed ID: 33064866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.
    Colwell RK; Brehm G; Cardelús CL; Gilman AC; Longino JT
    Science; 2008 Oct; 322(5899):258-61. PubMed ID: 18845754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.
    García-Robledo C; Kuprewicz EK; Staines CL; Erwin TL; Kress WJ
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):680-5. PubMed ID: 26729867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perch-height specific predation on tropical lizard clay models: implications for habitat selection in mainland neotropical lizards.
    Steffen JE
    Rev Biol Trop; 2009 Sep; 57(3):859-64. PubMed ID: 19928477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary impacts of winter climate change on insects.
    Marshall KE; Gotthard K; Williams CM
    Curr Opin Insect Sci; 2020 Oct; 41():54-62. PubMed ID: 32711362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vulnerability to climate change of Anolis allisoni in the mangrove habitats of Banco Chinchorro Islands, Mexico.
    Medina M; Fernández JB; Charruau P; de la Cruz FM; Ibargüengoytía N
    J Therm Biol; 2016 May; 58():8-14. PubMed ID: 27157328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal ecology of three coexistent desert lizards: Implications for habitat divergence and thermal vulnerability.
    Li SR; Wang Y; Ma L; Zeng ZG; Bi JH; Du WG
    J Comp Physiol B; 2017 Oct; 187(7):1009-1018. PubMed ID: 28324161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Running performance with emphasis on low temperatures in a Patagonian lizard, Liolaemus lineomaculatus.
    Cecchetto NR; Medina SM; Ibargüengoytía NR
    Sci Rep; 2020 Sep; 10(1):14732. PubMed ID: 32895421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.