These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23389653)

  • 1. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods.
    Maeda S; Ohno K; Morokuma K
    Phys Chem Chem Phys; 2013 Mar; 15(11):3683-701. PubMed ID: 23389653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Catalysis Using the Artificial Force Induced Reaction Method.
    Sameera WM; Maeda S; Morokuma K
    Acc Chem Res; 2016 Apr; 49(4):763-73. PubMed ID: 27023677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Automated and Systematic Transition Structure Explorer in Large Flexible Molecular Systems Based on Combined Global Reaction Route Mapping and Microiteration Methods.
    Maeda S; Ohno K; Morokuma K
    J Chem Theory Comput; 2009 Oct; 5(10):2734-43. PubMed ID: 26631786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding Reaction Pathways of Type A + B → X: Toward Systematic Prediction of Reaction Mechanisms.
    Maeda S; Morokuma K
    J Chem Theory Comput; 2011 Aug; 7(8):2335-45. PubMed ID: 26606607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Force Induced Reaction Method for Systematic Determination of Complex Reaction Mechanisms.
    Sameera WM; Kumar Sharma A; Maeda S; Morokuma K
    Chem Rec; 2016 Oct; 16(5):2349-2363. PubMed ID: 27492586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method.
    Maeda S; Taketsugu T; Morokuma K
    J Comput Chem; 2014 Jan; 35(2):166-73. PubMed ID: 24186858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study on the photodissociation of methylamine involving S1, T1, and S0 states.
    Xiao H; Maeda S; Morokuma K
    J Phys Chem A; 2013 Jul; 117(28):5757-64. PubMed ID: 23789818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces.
    Maeda S; Harabuchi Y; Takagi M; Taketsugu T; Morokuma K
    Chem Rec; 2016 Oct; 16(5):2232-2248. PubMed ID: 27258568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Automated Reaction Path Search Methods to a Systematic Search of Single-Bond Activation Pathways Catalyzed by Small Metal Clusters: A Case Study on H-H Activation by Gold.
    Gao M; Lyalin A; Maeda S; Taketsugu T
    J Chem Theory Comput; 2014 Apr; 10(4):1623-30. PubMed ID: 26580374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation and performance of the artificial force induced reaction method in the GRRM17 program.
    Maeda S; Harabuchi Y; Takagi M; Saita K; Suzuki K; Ichino T; Sumiya Y; Sugiyama K; Ono Y
    J Comput Chem; 2018 Feb; 39(4):233-251. PubMed ID: 29135034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AFIR explorations of transition states of extended unsaturated systems: automatic location of ambimodal transition states.
    Ito T; Harabuchi Y; Maeda S
    Phys Chem Chem Phys; 2020 Jul; 22(25):13942-13950. PubMed ID: 32609130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu
    Iwasa T; Sato T; Takagi M; Gao M; Lyalin A; Kobayashi M; Shimizu KI; Maeda S; Taketsugu T
    J Phys Chem A; 2019 Jan; 123(1):210-217. PubMed ID: 30540470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CASPT2 study of photodissociation pathways of ketene.
    Xiao H; Maeda S; Morokuma K
    J Phys Chem A; 2013 Aug; 117(32):7001-8. PubMed ID: 23373716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum chemistry of C(3)H(6)O molecules: structure and stability, isomerization pathways, and chirality changing mechanisms.
    Elango M; Maciel GS; Palazzetti F; Lombardi A; Aquilanti V
    J Phys Chem A; 2010 Sep; 114(36):9864-74. PubMed ID: 20575571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global
    Li HB; Jia Q
    RSC Adv; 2019 May; 9(29):16900-16908. PubMed ID: 35516412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global exploration of isomers and isomerization channels on the quantum chemical potential energy surface of H
    Ohno K; Kishimoto N; Iwamoto T; Satoh H
    J Comput Chem; 2017 Apr; 38(10):669-687. PubMed ID: 28101902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High performance global exploration of isomers and isomerization channels on quantum chemical potential energy surface of H
    Ohno K; Kishimoto N; Iwamoto T; Satoh H; Watanabe H
    J Comput Chem; 2021 Jan; 42(3):192-204. PubMed ID: 33146910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Predicting Full Catalytic Cycle Using Automatic Reaction Path Search Method: A Case Study on HCo(CO)3-Catalyzed Hydroformylation.
    Maeda S; Morokuma K
    J Chem Theory Comput; 2012 Feb; 8(2):380-5. PubMed ID: 26596590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of Potential Energy Surfaces towards Global Reaction Route Mapping.
    Ohno K
    Chem Rec; 2016 Oct; 16(5):2198-2218. PubMed ID: 27059804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical insight into the wavelength-dependent photodissociation mechanism of nitric acid.
    Xiao H; Maeda S; Morokuma K
    Phys Chem Chem Phys; 2016 Sep; 18(35):24582-90. PubMed ID: 27538805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.